
Math 112 lecture for Wednesday, Week 10

Series tests I

(Supplemental reading: Section 9.2 in Swanson.)

Our next goal is to present the standard collection of tests for determining whether
a series converges.1 Here is the list:

1. the geometric series test

2. the n-th term test

3. the comparison test

4. the limit comparison test

5. the alternating series test

6. the absolute convergence test

7. the ratio test

8. the root test

9. the integral test

10. the p-series test.

We have already discussed the geometric series test, but we will state it again here
for completeness and for review.

1. The geometric series test. Let r ∈ C. The series
∑∞

n=0 r
n converges if and

only if |r| < 1. When |r| < 1,
∞∑
n=0

rn =
1

1− r
.

More generally, for a ∈ C and k ∈ N, if |r| < 1, then

∞∑
n=k

arn =
ark

1− r
.

Examples. (See earlier in our notes for more examples.)

1Note that knowing that a series converges is different from knowing its limit.
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(a)
∞∑
n=0

(
i

2

)n

=
1

1− i
2

=
2

2− i
=

2

2− i
· 2 + i

2 + i
=

4

5
+

1

5
i.

(b)
∞∑
n=2

8

(
2n+2

5n

)
= 8

∞∑
n=2

4 · 2n

5n
= 32

∞∑
n=2

(
2

5

)n

= 32

(
2

5

)2
1

1− 2
5

=
128

15
.

(c)
∑∞

n=1(4i)
n diverges since |4i| = 4 ≥ 1.

2. The n-th term test. The n-th term test is a criterion for divergence of a complex
series. It says that if limn→∞ an ̸= 0, then

∑
an diverges. If limn→∞ an = 0, we cannot

conclude that
∑

an converges, as we will see with the harmonic series, below.

Proposition. If limn→∞ an ̸= 0, then
∑

an diverges.

Proof. To prove this result, we prove its contrapositive2: if
∑

an converges, then
limn→∞ an = 0. To see this, suppose that

∑
an = s, i.e., lim sn = s where sn =∑n

k=1 ak is the n-th partial sum of {an}. We have that sn − sn−1 = an. Therefore,
using our limit theorems

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.

□

Examples.

(a) The series
∑∞

n=1(−1)n diverges since limn→∞(−1)n does not exist. In particular,
limn→∞(−1)n ̸= 0.

(b) The series
∑∞

n=1
3n2−2n+1

2n2+5
does not converge since limn→∞

3n2−2n+1
2n2+5

= 3
2
̸= 0.

(c) Consider series
∑∞

n=1
1
n
. We have lim 1

n
= 0, however, as we will see below, this

series diverges. So the converse of the proposition does not hold. The proposition
can only be used to prove divergence (not convergence).

The harmonic series. The harmonic series is the series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . .

Here is a plot of its partial sums, 1, 1 + 1/2, 1 + 1/2 + 1/3, . . . :

2The contrapositive of a statement “P implies Q” is “not Q implies not P”.
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It looks like these partial sums might be converging, but in fact they do not. You
may notice that this plot is reminiscent of the graph of the logarithm, which hints
that to see substantial growth in the partial sums, we will need to consider partial
sums of an exponentially-growing number of terms of the series. The first proof
that the harmonic series diverges, which we present below, is due to Nicole Orseme
around 1350. The theorem is a special case of the p-series test which we will discuss
later and easily prove using the integral test.

Theorem. The harmonic series diverges.

Proof. The first partial sum of the harmonic series is

1∑
n=1

1

n
= 1.

The second partial sum is
2∑

n=1

1

n
= 1 +

1

2

The fourth:

22∑
n=1

1

n
= 1 +

1

2
+

(
1

3
+

1

4

)
≥ 1 +

1

2
+

(
1

4
+

1

4

)
= 1 +

1

2
+

1

2
= 1 + 2 · 1

2
.
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The eighth:

23∑
n=1

1

n
= 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)

= 1 + 3 · 1
2
.

An induction proof shows that

s2k =
2k∑
n=1

1

n
≥ 1 + k · 1

2
.

for all k ≥ 0. Thus, the sequence of partial sums for the harmonic series is unbounded
and, hence, diverges.

3. The comparison test. In the following proposition, notice that the test only
applies to nonnegative real sequences. Also, notice the crucial role of the monotone
convergence theorem in the proof. (Recall that MCT says that if a real sequence is
monotone and bounded above, then it converges.)

Proposition (series comparison test). Suppose that {an} and {bn} are real
sequences with

0 ≤ an ≤ bn

for all n. Then

(a)
∑

bn converges ⇒
∑

an converges.

(b)
∑

an diverges ⇒
∑

bn diverges.

Proof. Let

sn = a1 + a2 + · · ·+ an

tn = b1 + b2 + · · ·+ bn

be the respective partial sums. Since an ≤ bn for all n, we have sn ≤ tn for all n. Since
both sequences have nonnegative terms, their sequences of partial sums are monotone
increasing. To prove part (a), suppose that

∑
bn converges, and say

∑
bn = t. This
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means that lim tn = t. By the monotone convergence theorem, we know that t =
sup {tn}. Thus,

sn ≤ tn ≤ t = sup {tn} .
Hence, {sn} is both monotone increasing and bounded above. Again by the monotone
convergence theorem, {sn} converges, i.e.,

∑
an converges.

Part (b) is the contrapositive of part (a) and, hence, follows immediately.

Examples.

(a) For all n ≥ 1

0 ≤ 1

(n+ 1)2
≤ 1

n(n+ 1)
.

We showed in an earlier lecture that
∑∞

n=1
1

n(n+1)
converges to 1. Thus, by

comparison to
∑∞

n=1
1

n(n+1)
,

∞∑
n=1

1

(n+ 1)2
=

1

22
+

1

32
+

1

42
+ . . .

converges. It then follows that

∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+

1

42
+ . . .

(The partial sums of the last two displayed series differ by 1, so the convergence
of one implies the convergence of the other.)

(b) The series
∞∑
n=1

1

n2 +
√
n

converges by comparison with
∞∑
n=1

1

n2
since

0 ≤ 1

n2 +
√
n
≤ 1

n2
.

(c) The series
∞∑
n=1

1√
n

diverges by comparison with
∞∑
n=1

1

n
since

0 ≤ 1

n
≤ 1√

n

for all n, and the harmonic series,
∞∑
n=1

1

n
, diverges.

We will continue with our list of tests next time.
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