
Math 112 lecture for Monday, Week 10

Series

(Supplemental reading: Section 9.1 in Swanson.)

Definition. Let {an} be a sequence of real or complex numbers. The n-th partial
sum of {an} is

sn :=
n∑

i=1

ai.

Example. The third partial sum of {1/n}n≥1 is

s3 =
1

1
+

1

2
+

1

3
=

11

6
.

Note in the following definition that a series is a special kind of sequence, and, hence,
all our earlier results about sequences apply.

Definition. Let {an} be a sequence of real or complex numbers. The infinite series
whose n-th term is an is the sequence of partial sums

{sn} = a1, a1 + a2, a1 + a2 + a3, . . .

If {sn} converges, say lim sn = s, then we write

∞∑
i=1

ai := lim
n→∞

sn = s,

and s is called the sum of the series. If {sn} diverges, we say the series diverges.

Example. Consider the series
∞∑
i=1

1

n(n+ 1)
.

The first few partial sums are

s1 =
1

1(1 + 1)
=

1

2

s2 =
1

1(1 + 1)
+

1

2(2 + 1)
=

1

2
+

1

6
=

2

3

1



s3 =
1

1(1 + 1)
+

1

2(2 + 1)
+

1

3(3 + 1)
=

3

4
.

It looks like

sn =
n− 1

n
. (1)

If that’s the case, then

∞∑
i=1

1

n(n+ 1)
= lim

n→∞

n− 1

n
= lim

n→∞

(
1− 1

n

)
= 1.

We could easily establish equation (1) by induction, but here is another (somewhat
tricky) approach: note that

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Thus, the n-th partial sum for the series is

sn =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n− 1
− 1

n

)
+

(
1

n
− 1

n+ 1

)

=
1

1
− 1

n+ 1
.

The above sum is called a telescoping sum—all its intermediate terms collapse. We
have

∞∑
n=1

1

n(n+ 1)
:= lim

n→∞
sn = lim

n→∞

(
1

1
− 1

n+ 1

)
= 1.

Figure 1: A collapsible telescope.

Proposition. (Limit theorem for series.) Suppose that
∑∞

n=1 an = a and
∑∞

n=1 bn =
b, and let r a real or complex number. Then
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(a)
∑∞

n=1(an + bn) =
∑∞

n=1 an +
∑∞

n=1 bn = a+ b.

(b)
∑∞

n=1(ran) = r
∑∞

n=1 an = ra.

Proof. Let sn and tn be the n-th partial sums for
∑∞

n=1 an and
∑∞

n=1 bn, respec-
tively. We are given that limn→∞ sn = a and limn→∞ tn = b. From our limit theo-
rems for ordinary limits, we have limn→∞(sn + tn) = a + b and limn→∞(rsn) = ra.
But sn + tn is the n-th partial sum for

∑∞
n=1(an + bn) and rsn is the n-th partial sum

for lim∞
n=1(ran) = ra. The result follows.

geometric series

Definition. A geometric series is a series of the form

∞∑
n=0

rn

where r is a real or complex number.

Example. Consider the geometric series
∞∑
n=0

(
i

2

)n

. The index starts at n = 0, so

the first few terms of the sequence of partial sums is

s0 = 1, s1 = 1 +
i

2
, s2 = 1 +

i

2
− 1

4
, s3 = 1 +

i

2
− 1

4
− i

8
, s4 = 1 +

i

2
− 1

4
− i

8
+

1

16
.

Here is a picture of the sequence of partial sums (connected by lines)

Theorem. (Geometric series) Let r ∈ C.

(a) If |r| < 1, then
∞∑
n=0

rn =
1

1− r
.
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More generally if |r| < 1 and m ∈ N, then

∞∑
n=m

rn =
rm

1− r
.

(b) If |r| ≥ 1, then
∑∞

n=0 r
n diverges.

Example. Let

α = (20/21)

(
1

2
+

√
3

2
i

)
=

1

2.1
+

√
3

2.1
i,

a point with argument 30◦ and length slightly less than 1. According to the geometric
series theorem, the series converges to

∞∑
n=0

αn =
1

1− α
≈ 0.68 + 1.85 i.

Here is a picture of the partial sums for
∑∞

n=0 α
n

Note that the angle at which each successive line rotates is arg(α) = 30◦. Can you
see why?

Example Compute the following sums:

(a)
∑∞

n=0

(
i
2

)n
(b)

∑∞
n=0 5

(
2
3

)n
(c)

∑∞
n=2

(
3
4

)n
(d)

∞∑
n=0

(4i)n (e)
∞∑
n=3

7
22n

10n
.

Note that in (c), the sum starts with n = 2, and in (e), the sum starts with n = 3.
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solution: (a) Since |i/2| = 1/2 < 1, the formula for the sum of a geometric series
applies, and we get

∞∑
n=0

(
i

2

)n

=
1

1− i
2

=
2

2− i
=

2

2− i
· 2 + i

2 + i
=

4 + 2i

5
.

(b) Using the limit theorems for series and the formula for the sum of a geometric
series, we have

∞∑
n=0

5

(
2

3

)n

= 5
∞∑
n=0

(
2

3

)n

= 5 · 1

1− 2
3

= 15.

(c) Using the formula for a geometric series, we have

∞∑
n=2

(
3

4

)n

=
(3/4)2

1− 3
4

=
9

4
.

Note: Another way to approach this problem is to first compute the sum starting
with n = 0:

∞∑
n=0

(
3

4

)n

=
1

1− 3
4

= 4,

and then subtract the terms corresponding to n = 0, 1:

4− 1− 3

4
=

9

4
.

This method takes more steps and, in practice, is a likely source of arithmetic errors.

(d) Since |4i| = 4 ≥ 1, the series
∑∞

n=0 (4i)
n diverges.

(e) We have

∞∑
n=3

7
22n

10n
=

∞∑
n=3

7
4n

10n

= 7
∞∑
n=3

(
4

10

)n

= 7
∞∑
n=3

(
2

5

)n
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= 7

(
2

5

)3 ∞∑
n=0

(
2

5

)n

= 7

(
2

5

)3
1

1− 2/5

= 7

(
2

5

)3
5

3
=

7 · 8
25 · 3

=
56

75
.

Proof of the geometric series theorem. An easy induction argument shows that

n∑
i=0

rn =
1− rn+1

1− r

for r ̸= 1. Suppose that |r| < 1. By the above formula, the n-th partial sum of the
series is

sn =
1− rn+1

1− r
.

Using our limit theorems, we get

lim
n→∞

sn = lim
n→∞

1− rn+1

1− r

=
1

1− r
· lim
n→∞

(1− rn+1) (since
1

1− r
is a constant)

=
1

1− r

(
lim
n→∞

1− lim
n→∞

rn+1
)

=
1

1− r

(
lim
n→∞

1− 0
)

(since |r| < 1)

=
1

1− r
.

Next, use our limit theorem for series to get

∞∑
n=m

rn = rm + rm+1 + rm+2 + · · · = rm(1 + r + r2 + . . . ) = rm
∞∑
n=0

rn =
rm

1− r
.

Now suppose that |r| ≥ 1. If r = 1, then the n-th partial sum of the series is sn = n,
which gives a divergent sequence. Next, suppose that |r| ≥ 1 and r ̸= 1. Recall that

6



in that case, we showed earlier that limn→∞ rn diverges. For the sake of contradiction
suppose the series converges. Say

∑∞
n=0 r

n = s. From our earlier formula, we know

sn =
1− rn+1

1− r
.

Solve for rn+1 to get rn+1 = 1− (1− r)sn, and hence,

rn =
1

r
(1− (1− r)sn).

We are assuming limn→∞ sn = s, and therefore, using our limit theorems

lim
n→∞

rn =
1

r
(1− (1− r)s).

However, we know limn→∞ rn diverges when |r| ≥ 1 and r ̸= 1. This contradiction
shows that

∑∞
n=0 r

n must diverge.
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