
Math 112 lecture for Friday, Week 10

Series tests II

(Supplemental reading: Section 9.2 in Swanson.)

We continue our discussion of the standard tests for determining whether a series
converges.

1. the geometric series test

2. the n-th term test

3. the comparison test

4. the limit comparison test

5. the alternating series test

6. the absolute convergence test

7. the ratio test

8. the root test

9. the integral test

10. the p-series test.

4. The limit comparison test. In the following, note the key hypotheses that the
sequences have positive terms and that the limit of their quotient is nonzero. Since
a sequence converges if and only if its tail converges, one may also apply the limit
comparison test to sequences that are positive after a finite number of terms.

Proposition (limit comparison test). Suppose {an} and {bn} are real sequences
of positive terms and that

lim
n→∞

an
bn

= L ̸= 0.

Then
∑

an converges if and only if
∑

bn converges.

Remark. Whether
∑

n an converges depends upon how quickly the terms an die off.
For instance,

∑∞
n=1

1
n2 converges but

∑∞
n=1

1
n
does not. Even though lim 1

n2 = lim 1
n
=

0, the terms of
{

1
n

}
do not die off quickly enough. The condition an

bn
= L ̸= 0 means

that an and bn grow or diminish at comparable rates, unlike the case of
∑∞

n=1
1
n2

and
∑∞

n=1
1
n
.
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Example. Consider the series
∞∑
n=1

6n+ 7

2n2 − 4
.

For large n,
6n+ 7

2n2 − 4
≈ 6n

2n2
=

3

n
.

Since the harmonic series,
∑∞

n=1
1
n
diverges, we expect

∑∞
n=1

6n+7
2n2−4

will also diverge.

To make this intuition precise, we use the limit comparison test with an = 6n+7
2n2−4

and

bn = 1
n
:

an
bn

=
6n+ 7

2n2 − 4
· n
1
=

6n2 + 7n

2n2 − 4
−→ 3 ̸= 0

as n → ∞. Thus,
∑∞

n=1
6n+7
2n2−4

diverges by limit comparison with the harmonic series.

Exercise. By a similar argument, show that
∑∞

n=1
7

2n2−4
converges using limit com-

parison with
∑∞

n=1
1
n2 .

Proof of the limit comparison test. Suppose that lim an
bn

= L ̸= 0. Since an > 0,

bn > 0, and L ̸= 0, we have L > 0. Apply the definition of the limit with ε = 1
2
L > 0

to find N such that n > N implies∣∣∣∣L− an
bn

∣∣∣∣ < 1

2
L.

Thus, an
bn

is within a distance of L/2 from L, i.e., it is in the interval pictured below:

1
2
L 3

2
LL

.

Then
1

2
L <

an
bn

<
3

2
L ⇒ 1

2
Lbn < an <

3

2
Lbn.

If
∑

an converges, the ordinary comparison theorem implies that
∑

1
2
Lbn converges.

Hence, using our earlier limit theorems1, so does 2
L

∑
1
2
Lbn =

∑
bn. Similarly, if

∑
bn

converges, then so does 3
2
L
∑

bn =
∑

3
2
Lbn. Then since an < 3

2
Lbn, the comparison

theorem says
∑

an converges.

1If
∑

cn converges and k is a constant, then
∑

kcn converges and equals k
∑

cn.
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5. The alternating series test.

We saw earlier that if
∑

an converges, then limn→∞ an = 0. We also saw that
the converse does not hold, in general. For instance

∑∞
n=1

1
n
diverges even though

limn→∞
1
n
= 0. We now discuss the case of a special type of series for which the

converse does hold.

Proposition (alternating series test). Let {an} be a monotonically decreasing
sequence of positive terms. Then the series

∑∞
n=1(−1)n+1an converges if and only if

limn→∞ an = 0.

Examples. The alternating harmonic series is the series

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · .

To see that it converges, apply the alternating series test with an = 1
n
. (Check that

the test applies:
{

1
n

}
is a monotonically decreasing sequence of positive terms, and

limn→∞
1
n
= 0.)

The alternating harmonic series is the canonical example of what is called a condi-
tionally convergent series: it converges, but the series formed by taking the absolute
values of it terms,

∑∞
n=1 |(−1)n+1 1

n
| =

∑∞
n=1

1
n
, diverges.

Proof of the alternating series test.

(⇒) Suppose that
∑∞

n=1(−1)n+1an converges. By the n-th term test, it follows
that limn→∞(−1)n+1an = 0. We have seen that if {bn} is any sequence, real or
complex, that limn→∞ bn = 0 if and only if limn→∞ |bn| = 0. Applying that here, we
conclude that limn→∞ an = 0.

(⇐) Now suppose that limn→∞ an = 0. We must argue that the sequence of partial
sums {sn} for

∑∞
n=1(−1)n+1an converges. Our strategy is to divide these partial sums

into two subsequences, {s2n} and {s2n+1}—the even- and the odd-indexed terms—and
to argue that these two subsequences converge to the same value. First consider {s2n}:

s2n = (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n).

The terms of s2n are grouped as above to make it clear that since {an} is monotonically
decreasing, each of the a2k−1 − a2k is nonnegative. Thus, {s2n} is monotonically
increasing. Further, looking at this sequence a different way makes it clear that s2n
is bounded above by a1:

s2n = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−2 − a2n−1)− a2n ≤ a1.
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By the monotone convergence theorem, we conclude that

lim
n→∞

s2n = s

for some s ∈ R. It then follows that

lim
n→∞

s2n+1 = lim
n→∞

(s2n + an+1) = lim
n→∞

s2n + lim
n→∞

an+1 = s+ 0 = s.

(We know that limn→∞ an+1 = 0 by the n-term test.) Since

lim
n→∞

s2n = lim
n→∞

s2n+1 = s,

it looks like there is some hope of showing that limn→∞ sn = s. In fact, that is true,
and we can give a straight ε-N proof. Let ε > 0, and then take N so that n > N
implies.

lim
n→∞

|s− s2n| < ε and lim
n→∞

|s− s2n+1| < ε

simultaneously. But this just says that every term of the sequence {sn} is within ε
of s: n > 2N + 1 implies |s− sn| < ε.

6. The absolute convergence test.

Definition. A series of complex numbers
∑

an is absolutely convergent if
∑

|an|
is convergent. If

∑
an converges but

∑
|an| does not, then

∑
an is conditionally

convergent.

Example. To emphasize the example presented earlier: the alternating harmonic se-
ries,

∑∞
n=1(−1)n+1 1

n
, converges (by the alternating series test), but

∑∞
n=1

∣∣(−1)n+1 1
n

∣∣ =∑∞
n=1

1
n
does not. So the alternating harmonic series is conditionally convergent.

Many of our series tests apply to only series whose terms are nonnegative reals. The
following proposition is of central importance: it shows how these series tests can
say something about arbitrary complex series (since the absolute value of a complex
number is nonnegative and real).

Proposition (absolute convergence test). Let
∑

an be a complex series. Then
if
∑

an is absolutely convergent, it is convergent:∑
|an| convergent =⇒

∑
an convergent.

Examples. The series

∞∑
n=1

(−1)n+1 1

n2
= 1− 1

4
+

1

9
− 1

16
+ · · ·
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converges by the absolute convergence test since

∞∑
n=1

∣∣∣∣(−1)n+1 1

n2

∣∣∣∣ = ∞∑
n=1

1

n2
,

and we have seen that
∑∞

n=1
1
n2 converges.

Similarly,
∞∑
n=1

cos(n) + i sin(n)

n2

is absolutely convergent since

∞∑
n=1

∣∣∣∣cos(n) + i sin(n)

n2

∣∣∣∣ = ∞∑
n=1

| cos(n) + i sin(n)|
n2

=
∞∑
n=1

1

n2
.

Proof of the absolute convergence test. Suppose that
∑∞

n=1 |an| converges. We will
use the fact that a real or complex series converges if and only it is a Cauchy sequence
in order to prove that

∑∞
n=1 an converges.

Define
sn = a1 + ·+ an and s̃n = |a1|+ ·+ |an|,

the partial sums for
∑∞

n=1 an and
∑∞

n=1 |an|, respectively. We are given that {s̃n}
converges and must show that {sn} converges. Let ε > 0. Since {s̃n} converges, it is
a Cauchy sequence. Thus, there exists N such that m,n > N implies

|s̃m − s̃n| < ε.

Without loss of generality, suppose that m ≥ n. Then, using the triangle inequality,

|sm − sn| = |an+1 + · · ·+ am|
≤ |an+1|+ · · ·+ |am|
= ||an+1|+ · · ·+ |am||
= |s̃m − s̃n|
< ε.

Thus, {sn} is a Cauchy sequence and therefore converges. In other words,
∑∞

n=1 an
converges.

A peculiar property of conditionally convergent series. What happens if you
rearrange the terms of an infinite series? To be precise, define a rearrangement of a
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series
∑

an to be a series
∑

bn where the elements of {an} and {an} are in bijection—
same sums but in different orders. By the commutative law for addition, one might
expect to get the same behavior: one of the series converges if and only if the other
does, and it they do converge, they converge to the same value. It turns out that this
is true for absolutely convergent series but not for conditionally convergent ones. For
instance, all rearrangements of the series

∑∞
n=1

1
n2 will converge to the same value.

On the other hand the value of a rearrangement of
∑∞

n=1(−1)n+1 1
n
will depend on

the rearrangement—even whether the series will converge. Something even wilder is
true:

Proposition. Let
∑

an be a conditionally convergent real series, and let a be any
real number. Then there is a rearrangement of

∑
an that converges to a. Further,

there are rearrangements of
∑

an that diverge to ∞, that diverge to −∞, and that
fail to have any limit.

The idea behind the proof is the following. Say
∑

an is conditionally convergent.
Then let

∑
pn be the same as

∑
an after setting all negative terms, an < 0, equal to

zero. Similarly, let
∑

qn be the same as
∑

an after setting all positive terms equal
to zero. Using the monotone convergence theorem, one may show that since

∑
an is

conditionally convergent,
∑

pn diverges to ∞ and
∑

qn diverges to −∞. To get a
rearrangement of

∑
an that converges to an arbitrary real number a do the following.

Assume a > 0, the case of a ≤ 0 being similar. Create the rearrangement of
∑

an
in steps. First add enough terms of

∑
pn until we first get a number bigger than a.

That’s possible since
∑

pn diverges to ∞. Next, add enough terms from
∑

qn until
we first get a number less than a, possible since

∑
qn diverges to −∞. Continue now

by adding further terms from
∑

pn until we first get a number above a, and then
add further terms from

∑
qn until we first get below a. Continue ad infinitum. The

next part of the argument is to show the resulting rearrangement converges to a. A
similar argument holds in the cases where a = ±∞.
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