
Math 112 lecture for Wednesday, Week 9

Monotone Convergence Theorem

(Supplemental reading: Section 8.6 Swanson.)

Today, we will prove two results: (i) convergent sequences are bounded (but not
conversely), and (ii) the Monotone Convergence Theorem.

Definition. A sequence {sn} of complex numbers is bounded if there exists B ∈ R
such that

|sn| ≤ B

for all n.

If the sn are all real numbers, then this definition of boundedness coincides with the
one we gave earlier. In general, it means that all of the numbers in the sequence are
containing in a closed ball of finite radius centered at the origin:

B

Theorem. Every convergent sequence is bounded.

Proof. Let {sn} be a convergent sequence, and say limn→∞ sn = s. Apply the defini-
tion of the limit with ε = 1 to find an N ∈ R such that n > N implies

|s− sn| < 1.

By taking N larger, if necessary, we may assume N is an integer greater than or
equal to 1. This will be usual later on in the proof. We apply the reverse triangle
inequality:

1 > |s− sn| = |sn − s| ≥ |sn| − |s| ⇒ 1 + |s| > |sn|.
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Thus, if n > N then |sn| < 1 + |s|. So we have accomplished the hardest part by
bounding all but finitely many points in the sequence by the real number 1+ |s|, but
it could be that s1, s2, . . . , sN are further away from the origin. So let

B = max {|s1|, |s2|, . . . , |sN |, 1 + |s|} .

This means that we have set B equal to the maximum number in the given set. It
follows that

|sn| ≤ B

for all n: If n > N , then |sn| < 1 + |s| ≤ B, and if n ≤ N , then |sn| ≤ |sn| ≤ B.

Remark. The converse of the above theorem does not hold. For instance, consider
the sequence 1,−1, 1,−1, . . . It is bounded but does not converge.

monotone convergence theorem

Definition. A sequence of real numbers {sn} is monotone increasing if sn ≤ sn+1 for
all n. It is monotone decreasing if sn ≥ sn+1 for all n.

Note thatmonotone increasing is synonymous with non-decreasing since the condition
is sn ≤ sn+1, not sn < sn+1. An analogous remark holds for monotone decreasing
sequences.

Example. The constant sequence 1, 1, 1, . . . is both monotone increasing and mono-
tone decreasing.

Theorem. (Monotone Convergence Theorem, MCT). If {sn} is a monotone in-
creasing sequence that is bounded above or a monotone decreasing sequence that
is bounded below, then {sn} converges. (And it converges to sup {sn} or inf {sn},
respectively.)

Proof. Suppose that {sn} is monotone increasing and bounded above. (The case
where {sn} is monotone decreasing and bounded below is similar, or it can be reduced
to the increasing case by considering {−sn}.) By completeness of the real numbers,
the set {sn} has a supremum. Say s = sup {sn}. We claim that limn→∞ sn = s. To
see this, let ε > 0. Then s − ε < s, i.e., s − ε is strictly less than the least upper
bound of {sn}. This means that s− ε is not an upper bound for that set. Therefore,
there exists some sN such that s − ε < sN , i.e., s − sN < ε. However, since the
sequence {sn} is a monotone increasing sequence, if n > N , it follows that sn ≥ sN ,
and hence, −sn ≤ −sN . Adding s to both sides yields s− sn ≤ s− sN . Now, since s
is an upper bound for the set, we also have 0 ≤ s− sn. Putting this all together:

0 ≤ s− sn ≤ s− sN < ε
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for all n > N . It follows that |s − sn| < ε for all n > N . We have shown
that limn→∞ sn = s, as claimed. □

Example. Here is an example of the monotone convergence theorem in use. De-
fine s1 = 1, and for each n ≥ 1, define sn+1 :=

√
1 + sn. The first few terms of the

sequence are

1,
√
1 + 1,

√
1 +

√
1 + 1, . . .

To find the limit, we first appeal to the monotone convergence theorem. We show
the sequence is monotone increasing, i.e., that sn ≤ sn+1 by induction. For the base
case, n = 1, note that s1 = 1 ≤ s2 =

√
2. Now suppose that sn ≤ sn+1 for some n ≥ 1.

It follows that
sn+1 =

√
1 + sn ≤

√
1 + sn+1 = sn+2.

(Here, we have used that f(x) =
√
x is an increasing function: if x < y, then

√
x <√

y.) The result now follows for all n by induction.

To use the monotone convergence theorem, we must also verify that the sequence is
bounded above. We show it’s bounded above by 2 by induction. For the base case,
note that s1 = 1 ≤ 2. Suppose that sn ≤ 2 for some n ≥ 1. Then

sn+1 =
√
1 + sn ≤

√
1 + 2 =

√
3 ≤ 2.

The result holds for all n by induction.

The monotone convergence theorem now tells us the sequence has a limit. Say
that limn→∞ sn = s. We would like to evaluate s. We will appeal to a result we have
not yet shown: if f(x) is a continuous function, then limn→∞ f(sn) = f(limn→∞ sn) =
f(s). We apply this in the case f(x) =

√
x:

sn+1 =
√
1 + sn ⇒ lim

n→∞
sn+1 =

√
lim
n→∞

(1 + sn) =
√
1 + s.

It is an easy exercise to show that limn→∞ sn+1 = limn→∞ sn = s.1 Therefore, we see

s = lim
n→∞

sn = lim
n→∞

sn+1 =
√
1 + s.

Squaring both sides,

s2 = 1 + s ⇒ s2 − s− 1 = 0 ⇒ s =
1±

√
5

2

1Here we are comparing the sequence {sn} to the “shifted sequence” {sn+1} = s2, s3, . . . . If sn
is within ε of s for all n > N , then so is sn+1 since n > N implies that n+ 1 > N .
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by the quadratic equation. By squaring, we introduced an extraneous answer. Since
0 ≤ sn for all n, it follows that 0 = lim 0 ≤ lim sn = s. 2 Hence, smust be nonnegative.
It follows that

s =
1 +

√
5

2
.

2In general, taking limits “preserves inequalities”. We will discuss this later and assume it for
now.
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