
Math 112 lecture for Friday, Week 9

Misc. limit theorems, infinite limits, and Cauchy sequences

(Supplemental reading: Sections 8.3, 8.4, 8.7, and 8.8 in Swanson.)

Miscellaneous limit theorems

We state several theorems here about limits. The numbering refers to Swanson’s text,
where the interested reader may find the proofs.

Theorem 8.4.1. Limits are unique: if limn→∞ sn = s and limn→∞ sn = s′, then
s = s′.

Proof. Let ε > 0. Since limn→∞ sn = s and limn→∞ sn = s′, there exists an N such
that n > N implies that |s − sn| < ε/2 and |s′ − sn| < ε/2. As usual, we can
take N large enough so that it applies to both limits simultaneously. By the triangle
inequality, we then have that for n > N ,

|s− s′| = |(s− sn)− (s′ − sn)| ≤ |s− sn|+ |s′ − sn| < ε/2 + ε/2 = ε.

We have shown that |s − s′| < ε for all ε > 0. Since there are no infinitely small
positive numbers (proved in the earlier Extrema lecture), it follows that |s− s′| = 0,
and hence, s = s′.

Theorem 8.4.11. (Squeeze theorem.) Let {an}, {bn}, and {cn} be real sequences,
and suppose that an ≤ bn ≤ cn for all n. Then, if limn→∞ an = limn→∞ cn, it follows
that

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn.

Example. Here, we prove that lim
n→∞

n2 − 3

n3 + 6n+ 1
= 0 using the squeeze theorem. We

have
n2 − 3

n3 + 6n+ 1
≤ n2

n3 + 6n+ 1
≤ n2

n3
=

1

n
;

Thus,

0 ≤ n2 − 3

n3 + 6n+ 1
≤ 1

n
,

for n > 1. Given that limn→∞ 0 = 0 and lim
n→∞

1

n
= 0, it follows that

lim
n→∞

n2 − 3

n3 + 6n+ 1
= 0
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by the squeeze theorem.

Example. Consider the sequence

{
sin(n)

n

}
. Since | sin(n)| ≤ 1, we have

− 1

n
≤ sin(n)

n
≤ 1

n
.

Then, since

lim
n→∞

− 1

n
= lim

n→∞

1

n
= 0,

it follows that

lim
n→∞

sin(n)

n
= 0

by the squeeze theorem.

Theorem 8.4.10. The operation of taking limits preserves inequalities: Suppose
that {an} and {bn} are convergent real sequences and that an ≤ bn for all n (or for
all n past a certain point) then

lim
n→∞

an ≤ lim
n→∞

bn.

(Recall that C cannot be ordered. So to above theorem does not make sense for
complex sequences in general.)

Remark. The operation of taking limits does not preserve strict inequality. For
example, compare the constant sequence {0} with the sequence

{
1
n

}
. We have

0 <
1

n

for all n, but

lim
n→∞

0 = lim
n→∞

1

n
.

Subsequences

We form a subsequence from a giving sequence by dropping terms from the sequence
(but leaving an infinite number):

sequence: s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, . . .

subsequence: s2, s3, s4, s6, s9, s11, . . .
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Definition. Let {sn} be a sequence, and let n0 < n1 < n2 < . . . be any sequence of
natural numbers. Then the sequence {snk

}∞k=0 is called a subsequence of {sn}.

Example. In the previous example,

n0 = 2, n1 = 3, n2 = 4, n3 = 6, n4 = 9, n5 = 11, . . .

Example. Let sn = 1/n for n = 1, 2, . . . . Then the following is a subsequence
of {sn}:

{s2k}∞k=1 = s2, s4, s6, s8, . . .

=
1

2
,
1

4
,
1

6
,
1

8
, . . .

Theorem. (Main theorem for subsequences.) If {sn} is a sequence converging to s
and {snk

} is any subsequence, then {snk
} also converges to s. (Every subsequence of

a convergent sequence is convergent and has the same limit.)

Example. The previous theorem is especially useful for proving non-convergence.
For instance, consider the sequence {(−1)n}. It has the constant sequence {1} and
the constant sequence {−1} as subsequences. The former converges to 1 and the
latter to −1. We can deduce that {(−1)n} diverges (since otherwise all subsequence
would need to converge to the same value).

Infinite limits

Definition. A real sequence {an} diverges to ∞ if for all B ∈ R, there exists N ∈ R
such that n > N implies

an > B.

The sequence diverges to −∞ if for all B ∈ R, there exists N ∈ R such that n > N
implies

an < B.

We write
lim
n→∞

an = ∞ or lim
n→∞

an = −∞,

respectively.
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What this means: If limn→∞ sn = ∞, and you come up with a number B, no
matter how large, eventually, all of the terms in the sequences are larger than B.
If limn→∞ sn = −∞, and you come up with a number B, no matter how negative,
eventually, all of the terms in the sequences are less than B.

Example. To prove limn→∞ n2 = ∞, let B ∈ R. Given B, let N =
√
|B|. Then

n > N ⇒ n >
√
|B| ⇒ n2 > |B| ⇒ n2 > B.

Cauchy sequences.

The real numbers fill the “holes” in Q. For instance, consider the set of rational
numbers

S =
{
x ∈ Q : x2 ≤ 2

}
.

This is a nonempty set of Q and bounded above, but it does not have a supremum
in Q. One way to construct R is to use decimals. However that approach is a little
tougher than it might first seem. (To point out one difficulty, two different decimals
can be equal, e.g., 0.999 · · · = 1.000 . . . .) We will now outline a different approach.
There are sequences of rationals that “want to converge”. For example, take the
sequence we get by truncating the decimal expansion of

√
2:

1, 1.4, 1.41, 1.414, 1.4142, . . .

However, without real numbers, this sequence has nowhere to converge to.

A key idea in one approach to the construction of R is to think of sequences of rational
numbers as real numbers. For instance, we can think of the above sequence as

√
2.

A real number that is already a rational number, e.g., 1/2, can be thought of as
the constant sequence 1/2, 1/2, 1/2, . . . There are some obvious problems with this
approach:

(a) We only want to consider sequences of rationals that “want to converge”. What
could this mean?

(b) There are many different sequences that want to converge to the same point.
For instance, the constant sequence {0} and the sequence {1/n} both converge
to 0, as do infinitely many other sequences.

We fix the first problem with the following definition:

Definition. A sequence of numbers (rational, real, or complex) {sn} is a Cauchy
sequence if for ε > 0, there exists N ∈ R such that m,n > N implies

|sm − sn| < ε.
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Remark. The rough idea behind this definition is that as you go out far in the
sequence, the points in the sequence start to clump together—the distance between
all the remaining points is small.

Proposition. Every convergent sequence is a Cauchy sequence.

Proof. Suppose that {sn} is a convergent sequence, and let ε > 0. Say limn→∞ sn = s.
Then there exists N such that n > N implies

|s− sn| <
ε

2
.

But then, if m,n > N , by the triangle inequality,

|sm − sn| = |(s− sn)− (s− sm)| ≤ |s− sn|+ |s− sm| <
ε

2
+

ε

2
= ε.

We’ve shown that |sm − sn| < ε for all m,n > N . Hence {sn} is Cauchy.

Theorem. A sequence of real or complex numbers is convergent if and only if it is a
Cauchy sequence.

Proof. See Swanson’s text, Section 8.7.

Remark. The above theorem does not hold for Q. For instance, take a sequence
of rational numbers that converges to

√
2 in R. That sequence will be a Cauchy

sequence of rational numbers, but it will not converge in the rational numbers.

Definition of the real numbers

Let C be the set of all Cauchy sequences of rational numbers. As a first approximation,
we could try to define R := C. The problem with this is that multiple Cauchy
sequences will want to have the same limit. Again, for instance, consider the constant
sequence 0 and the sequence {1/n}. To fix that we define an equivalence relation:

Definition. Let {sn} , {tn} ∈ C. We say

{sn} ∼ {tn}

if
lim
n→∞

(sn − tn) = 0.
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Any easy check shows that ∼ is an equivalence relation on C. An equivalence class
for the relation is the set of all Cauchy sequences of rational numbers that want to
converge to the same thing. We can then define the real numbers to be the sets of
these equivalence classes:

Definition. The real numbers are

R := C/∼ .

with addition and multiplication defined by

[{sn}] + [{tn}] := [{sn + tn}]

[{sn}][{tn}] := [{sntn}].

There are a lot of details to check:

(a) Are addition and multiplication well-define or do they depend on the choice of
representatives for the equivalence classes? (Recall we had the same considera-
tion when defining addition and multiplication for equivalence classes of integers
modulo n.)

(b) Do we get a field?

(c) How do we define an order relation on R?

We’ll stop here, though.
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