Math 112 lecture for Wednesday, Week 7

SEqUENCES I

(Supplemental reading: Start reading Chapter 8 in Swanson.)
A sequence of complex numbers (a complex sequence) is a function

$$
\mathbb{N}_{>0} \rightarrow \mathbb{C} .
$$

If s is such a function, instead of $s(n)$, we usually write s_{n}. Essentially, the function s is just an unending ordered sequence of numbers:

$$
s_{1}, s_{2}, s_{3}, \ldots
$$

The sequence s can be notated in various ways, including

$$
\left\{s_{n}\right\}_{n>0},\left\{s_{n}\right\}_{n=1}^{\infty},\left\{s_{n}\right\}_{n},\left\{s_{n}\right\}
$$

among others. A real sequence is a special case of a complex sequence in which the image of s is in $\mathbb{R} \subset \mathbb{C}$.
Example. Some examples of sequences:
(a)

$$
\{1\}_{n=1}^{\infty}=1,1,1, \ldots
$$

(b) The first term in the following sequence is 4 :

$$
\{n\}_{n \geq 4}=4,5,6, \ldots
$$

(c)

$$
\left\{(-1)^{n}\right\}_{n \geq 0}=1,-1,1,-1, \ldots
$$

(d)

$$
\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}=1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots
$$

Definition. Let $\left\{a_{n}\right\}$ be a sequence of complex numbers, and let $a \in \mathbb{C}$. Then the limit of the sequence $\left\{a_{n}\right\}$ as n goes to infinity is a, denoted $\lim _{n \rightarrow \infty} a_{n}=a$, if for all $\varepsilon>0$, there exists $N \in \mathbb{R}$ such that $n>N$ implies $\left|a-a_{n}\right|<\varepsilon$. If $\lim _{n \rightarrow \infty} a_{n}=a$ for some $a \in \mathbb{C}$, we say $\left\{a_{n}\right\}$ is convergent, and if there is no such a, we say the sequence diverges.

Here is a shorthand for writing the definition: $\lim _{n \rightarrow \infty} a_{n}=a$ if $\forall \varepsilon>0, \exists N \in \mathbb{R}$ such that $n>N \Rightarrow\left|a-a_{n}\right|<\varepsilon$. The symbols \forall and \exists are called quantifiers. They stand for "for all" and "there exists", respectively.

It is notoriously difficult to fully appreciate all that is packed into the definition of the limit of a sequence. So the reader is encouraged to take their time and be patient! Here are some pointers to get started:
(a) Most importantly, the condition $\left|a-a_{n}\right|<\varepsilon$ means that a_{n} is within a distance of ε of a, i.e., it's in the ball of radius ε centered at a :

If we are dealing with a real sequence, then $\left|a-a_{n}\right|<\varepsilon$ means that a_{n} is in the interval $(a-\varepsilon, a+\varepsilon) \subset \mathbb{R}$. Note that when a is real, this interval is the intersection of the above ball with the real number line in \mathbb{C}.
(b) The rough idea of the limit is that as n get large, a_{n} gets close to a. By itself, this characterization is too vague. What is meant by "gets close to"? Also, is it OK if some but not all a_{n} get close to a ?
(c) The number ε is a challenge: "Can you make the distance between a_{n} and a less than ε ? The number N is the response: "Yes, if you go out further than N steps in the sequence, then all of the numbers in the sequence past that point are within a distance ε of a."
(d) The number N is a function of ε. If $\varepsilon>0$ is made smaller, then N usually needs to be made larger - you need to go out further in the sequence to get closer to the limit. So it might be better to write $N(\varepsilon)$ or N_{ε} instead of just N to highlight this dependence.
(e) This might be very helpful in understanding our definition: $\lim _{n \rightarrow \infty} a_{n}=a$ is equivalent to saying that for every $\varepsilon>0$, all but a finite number of the a_{n} are inside the ball of radius ε centered at a.

The following is a template for a limit proof that works directly from the definition of the limit:

Proof Template. $\lim _{n \rightarrow \infty} a_{n}=a$.
Proof. Given $\varepsilon>0$, let $N=$ blah. Then if $n>N$, we have

$$
\begin{aligned}
\left|a-a_{n}\right| & =\text { blah } \\
& = \\
& \leq \\
& = \\
& < \\
& =\varepsilon .
\end{aligned}
$$

For the proof to be valid, at least one strict inequality, " $<$ ", is required.
Example. Let $a \in \mathbb{C}$, and consider the constant sequence $\{a\}_{n}=a, a, a, \ldots$. Then $\lim _{n \rightarrow \infty} a=a$.

Proof. We are considering the sequence $\left\{a_{n}\right\}$ such that $a_{n}=a$ for all n. Given $\varepsilon>0$, let $N=0$. Then $n>N$ implies

$$
\left|a-a_{n}\right|=|a-a|=0<\varepsilon .
$$

Thus, $\lim _{n \rightarrow \infty} a=a$.
Note that in the above proof, we could have chosen any number $N \in \mathbb{R}$. The distance of every term in the sequence is a distance of 0 from a, and $0<\varepsilon$ by choice of ε.

Example. $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
Proof. Given $\varepsilon>0$, let $N=1 / \varepsilon$. Then $n>N$ implies

$$
\begin{array}{rlr}
\left|0-\frac{1}{n}\right| & =\left|\frac{1}{n}\right| & \\
& =\frac{1}{n} & (\text { since } n>0) \\
& <\frac{1}{N} & (\text { since } n>N) \\
& =\varepsilon & (\text { since } N=1 / \varepsilon) .
\end{array}
$$

The above proof is typical in that the value for N is unmotivated. The reader can verify each step of the proof, but may be mystified by the choice of N. That's because one usually constructs a limit proof by starting at the end of the proof (on scratch paper): we want $\left|a-a_{n}\right|<\varepsilon$, and then work backwards to find N. For instance, in this last proof, in the end, we want

$$
\left|0-\frac{1}{n}\right|<\varepsilon .
$$

This statement is equivalent to

$$
\frac{1}{n}<\varepsilon
$$

which is equivalent to

$$
\frac{1}{\varepsilon}<n .
$$

Thus, if we take $N=\frac{1}{\varepsilon}$ and assume $n>N$, we are OK:

$$
\frac{1}{\varepsilon}=N<n .
$$

All of our steps are reversible, so things are going to work out.
Example. Let's apply that same reasoning to construct a proof that

$$
\lim _{n \rightarrow \infty}(1+1 / \sqrt{n})=1
$$

Here $a_{n}=1+1 / \sqrt{n}$ and $a=1$. In the end, we will want $\left|a-a_{n}\right|<\varepsilon$, i.e.,

$$
|1-(1+1 / \sqrt{n})|<\varepsilon
$$

On scratch paper we work out

$$
\begin{aligned}
|1-(1+1 / \sqrt{n})|<\varepsilon & \Leftrightarrow|-1 / \sqrt{n}|<\varepsilon \\
& \Leftrightarrow \frac{1}{\sqrt{n}}<\varepsilon \\
& \Leftrightarrow \frac{1}{\varepsilon}<\sqrt{n} \\
& \Leftrightarrow \frac{1}{\varepsilon^{2}}<n .
\end{aligned}
$$

Thus, we can take $N=1 / \varepsilon^{2}$. Now we are ready to write the formal proof:

Claim. $\lim _{n \rightarrow \infty}(1+1 / \sqrt{n})=1$
Proof. Given $\varepsilon>0$, let $N=1 / \varepsilon^{2}$ and suppose that $n>N$. It follows that

$$
\begin{array}{rlr}
\left|1-\left(1+\frac{1}{\sqrt{n}}\right)\right| & =\frac{1}{\sqrt{n}} & \\
& <\frac{1}{\sqrt{N}} & \\
& =\varepsilon & (\text { since } n>N) \\
& \left(\text { since } N=1 / \varepsilon^{2}\right) .
\end{array}
$$

(Note that $n>N \Rightarrow \sqrt{n}>\sqrt{N} \Rightarrow \frac{1}{\sqrt{N}}>\frac{1}{\sqrt{n}}$.)

