
Math 112 lecture for Wednesday, Week 7

Sequences I

(Supplemental reading: Start reading Chapter 8 in Swanson.)

A sequence of complex numbers (a complex sequence) is a function

N>0 → C.

If s is such a function, instead of s(n), we usually write sn. Essentially, the function s
is just an unending ordered sequence of numbers:

s1, s2, s3, . . .

The sequence s can be notated in various ways, including

{sn}n>0 , {sn}∞n=1 , {sn}n , {sn} ,

among others. A real sequence is a special case of a complex sequence in which the
image of s is in R ⊂ C.
Example. Some examples of sequences:

(a)
{1}∞n=1 = 1, 1, 1, . . .

(b) The first term in the following sequence is 4:

{n}n≥4 = 4, 5, 6, . . .

(c)
{(−1)n}n≥0 = 1,−1, 1,−1, . . .

(d) {
1

n2

}∞

n=1

= 1,
1

4
,
1

9
,
1

16
, . . .

Definition. Let {an} be a sequence of complex numbers, and let a ∈ C. Then the
limit of the sequence {an} as n goes to infinity is a, denoted limn→∞ an = a, if for
all ε > 0, there exists N ∈ R such that n > N implies |a− an| < ε. If limn→∞ an = a
for some a ∈ C, we say {an} is convergent, and if there is no such a, we say the
sequence diverges.

Here is a shorthand for writing the definition: limn→∞ an = a if ∀ε > 0, ∃N ∈ R such
that n > N ⇒ |a− an| < ε. The symbols ∀ and ∃ are called quantifiers. They stand
for “for all” and “there exists”, respectively.
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It is notoriously difficult to fully appreciate all that is packed into the definition of
the limit of a sequence. So the reader is encouraged to take their time and be patient!
Here are some pointers to get started:

(a) Most importantly, the condition |a− an| < ε means that an is within a distance
of ε of a, i.e., it’s in the ball of radius ε centered at a:

ε

a

an

If we are dealing with a real sequence, then |a − an| < ε means that an is in
the interval (a − ε, a + ε) ⊂ R. Note that when a is real, this interval is the
intersection of the above ball with the real number line in C.

(b) The rough idea of the limit is that as n get large, an gets close to a. By itself,
this characterization is too vague. What is meant by “gets close to”? Also, is it
OK if some but not all an get close to a?

(c) The number ε is a challenge: “Can you make the distance between an and a
less than ε? The number N is the response: “Yes, if you go out further than N
steps in the sequence, then all of the numbers in the sequence past that point
are within a distance ε of a.”

(d) The number N is a function of ε. If ε > 0 is made smaller, then N usually needs
to be made larger—you need to go out further in the sequence to get closer to
the limit. So it might be better to write N(ε) or Nε instead of just N to highlight
this dependence.

(e) This might be very helpful in understanding our definition: limn→∞ an = a is
equivalent to saying that for every ε > 0, all but a finite number of the an are
inside the ball of radius ε centered at a.

The following is a template for a limit proof that works directly from the definition
of the limit:
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Proof Template. limn→∞ an = a.

Proof. Given ε > 0, let N = blah. Then if n > N , we have

|a− an| = blah

=

≤
=

<

= ε.

For the proof to be valid, at least one strict inequality,“<”, is required.

Example. Let a ∈ C, and consider the constant sequence {a}n = a, a, a, . . . .
Then limn→∞ a = a.

Proof. We are considering the sequence {an} such that an = a for all n. Given ε > 0,
let N = 0. Then n > N implies

|a− an| = |a− a| = 0 < ε.

Thus, limn→∞ a = a.

Note that in the above proof, we could have chosen any number N ∈ R. The distance
of every term in the sequence is a distance of 0 from a, and 0 < ε by choice of ε.

Example. lim
n→∞

1

n
= 0.

Proof. Given ε > 0, let N = 1/ε. Then n > N implies∣∣∣∣0− 1

n

∣∣∣∣ = ∣∣∣∣ 1n
∣∣∣∣

=
1

n
(since n > 0)

<
1

N
(since n > N)

= ε (since N = 1/ε).
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The above proof is typical in that the value for N is unmotivated. The reader can
verify each step of the proof, but may be mystified by the choice of N . That’s because
one usually constructs a limit proof by starting at the end of the proof (on scratch
paper): we want |a − an| < ε, and then work backwards to find N . For instance, in
this last proof, in the end, we want ∣∣∣∣0− 1

n

∣∣∣∣ < ε.

This statement is equivalent to
1

n
< ε,

which is equivalent to
1

ε
< n.

Thus, if we take N =
1

ε
and assume n > N , we are OK:

1

ε
= N < n.

All of our steps are reversible, so things are going to work out.

Example. Let’s apply that same reasoning to construct a proof that

lim
n→∞

(1 + 1/
√
n) = 1.

Here an = 1 + 1/
√
n and a = 1. In the end, we will want |a− an| < ε, i.e.,

|1− (1 + 1/
√
n)| < ε.

On scratch paper we work out

|1− (1 + 1/
√
n)| < ε ⇔ | − 1/

√
n| < ε

⇔ 1√
n
< ε

⇔ 1

ε
<

√
n

⇔ 1

ε2
< n.

Thus, we can take N = 1/ε2. Now we are ready to write the formal proof:
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Claim. limn→∞(1 + 1/
√
n) = 1

Proof. Given ε > 0, let N = 1/ε2 and suppose that n > N . It follows that∣∣∣∣1− (
1 +

1√
n

)∣∣∣∣ = 1√
n

<
1√
N

(since n > N)

= ε (since N = 1/ε2).

(Note that n > N ⇒
√
n >

√
N ⇒ 1√

N
> 1√

n
.)
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