Math 112 lecture for Monday, Week 7

TOPOLOGY

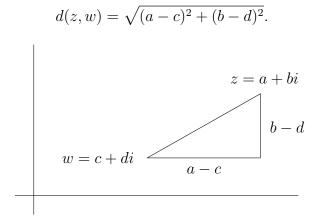
(Supplemental reading: Section 3.5 in Swanson.)

For the following, let $F = \mathbb{R}$ or \mathbb{C} .

Definition. The *distance* between $z, w \in F$ is

$$d(z,w) := |z-w|.$$

Example. In \mathbb{C} , with z = a + bi and w = c + di,



Definition. The open ball centered at $z \in F$ of radius $r \in \mathbb{R} > 0$ is the subset

 $B(z;r) := \{ w \in F : |w - z| < r \}.$

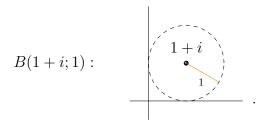
Example.

1. If $F = \mathbb{R}$, then what we have just called a ball is an open interval. For example, in \mathbb{R} , we have B(3; 1) = (2, 4):

$$B(3;1) = (2,4):$$

2 3 4

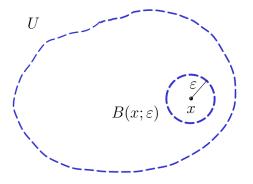
2. Here is a picture of the ball of radius 1 in \mathbb{C} centered at 1 + i:



Definition. A subset $U \subseteq F$ is *open* if it contains an open ball about each of its points. This means that for all $u \in U$, there exists $\varepsilon > 0$ such that

$$B(u;\varepsilon) \subseteq U.$$

A key point here is that the open ball must be entirely contained inside U:

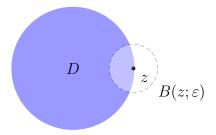


In the above picture, $U \subset \mathbb{C}$ is the set of all points inside the outer dashed line. Inside of U, we show a typical point x and an example of an open ball about x completely contained inside of U. As we test points nearer the border of U, the choice for ε will need to become smaller.

Example.

- 1. The empty set $\emptyset \subset F$ is open.
- 2. The set F, itself, is open (whether $F = \mathbb{R}$ or \mathbb{C}). Proof: Given $x \in F$, the open ball B(x; 1) is contained F.
- 3. An open interval $(a, b) \subseteq \mathbb{R}$ is open. Given $c \in (a, b)$, let ε be either c a or b c, whichever is smallest. Then the open interval centered at c and with radius ε is contained in (a, b). For instance, take the interval (0, 4), and let c = 3. Then (0, 4) contains the open ball of radius 1 about c, i.e., it contains the interval (2, 4). This open ball is shown in blue below:

- 4. A union of open intervals in \mathbb{R} is an open set. In fact, every subset of \mathbb{R} is a union of open intervals. We prove this and the analogous result for \mathbb{C} in a proposition below.
- 5. In $\mathbb{C} = \mathbb{R}^2$ the Cartesian product $(a, b) \times (c, d)$ is open. (This is a rectangle in \mathbb{R}^2 not containing its boundary.)
- 6. The closed interval [1, 2) is *not* open. The problem is the endpoint 1. We have $1 \in [1, 2]$ but there is no open ball (interval) centered at 1 and contained in [1, 2). Any open interval about 1 will contain points less that 1 and hence not in the set [1, 2).
- 7. The closed disc $D := \{z \in \mathbb{C} : |z| \le 1\}$ is not open. The problem is each of the points with modulus 1 sitting on the boundary of D. Any open ball about one of these points will contain points that are not in D, i.e., it will not be completely contained in D:



Proposition. Every open set in F is a union of open balls.

Proof. Let $U \subseteq F$ be open. Since U is open, for each $u \in U$, there exists $\varepsilon_u > 0$ such that

$$B(u;\varepsilon_u) \subseteq U.$$

We claim

$$\bigcup_{u \in U} B(u; \varepsilon_u) = U.$$

To see this, first let $v \in \bigcup_{u \in U} B(u; \varepsilon_u)$. Then $v \in B(u; \varepsilon_u)$ for some $u \in U$ (in fact, $v \in B(v; \varepsilon_v)$), and since $B(u; \varepsilon_u) \subseteq U$, we have $v \in U$. To see the reverse inclusion let $v \in U$. Then $v \in B(v; ve_v)$, and hence, v is in the union $\bigcup_{u \in U} B(u; \varepsilon_u)$. \Box

Proposition. Every nonempty open subset of F has infinitely many elements.

Proof. Let U be a nonempty open subset of F. Since U is nonempty, it contains some point u. Since U is open, it must contain an open ball $B(u; \varepsilon)$ about U. But every open ball contains infinitely many points. For instance $B(u; \varepsilon)$ contains the points $\{u + \varepsilon/n : n = 2, 3, 4, ...\}$.

Corollary. No nonempty finite set of points is open. In particular, for each $z \in F$, the set $\{z\}$ is not open.

Definition. The set of open sets of F forms a *topology* on F. This means that

- 1. \emptyset and F are open.
- 2. An arbitrary union of open sets is open.
- 3. A finite intersection of open sets is open.

Regarding part 3, note that an infinite intersection of open sets might not be open. For example,

$$\bigcap_{n=1}^{\infty} B(z; 1/n) = \{z\}$$

which is not open (since it is finite). For a more concrete example, note that

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \left\{ 0 \right\}.$$

Definition. A subset $C \subseteq F$ is *closed* if its complement $F \setminus C$ is open.

Example.

- 1. F is closed since $F \setminus F = \emptyset$, and \emptyset is open.
- 2. Similarly \emptyset is closed since $F \setminus \emptyset = F$, and F is open. (Thus, we have seen that F and \emptyset are both open and closed.¹)

¹If it seems paradoxical to you that there are sets, like the empty set, that are both open and closed, you are not alone (cf. Hitler learns topology where "null set" = "empty set", "neighborhood" = "open ball").

3. If $B \subseteq F$ is an open ball, the $F \setminus B$ is closed. For instance, if $F = \mathbb{R}$ and B = (0; 1), then $\mathbb{P} \setminus (-1, 1) = ($

$$\mathbb{R} \setminus (-1,1) = (-\infty,-1] \cup [1,\infty)$$

is closed.

4. A closed interval [a, b] in \mathbb{R} is closed. That's because its complement

$$\mathbb{R} \setminus [a, b] = (-\infty, a) \cup (b, \infty)$$

is open.

5. If $z \in F$, then the set $\{z\}$ is closed. (Exercise.)

Definition. The closed ball (disc) of radius r centered at $z \in F$ is

$$D(z;r) := \{ w \in F : |w - z| \le r \}.$$

Example. In \mathbb{R} , closed discs are the same as closed intervals [a, b]. In \mathbb{C} taking an open ball and adding its boundary gives a closed ball.

The following records an argument explained in the accompanying video lecture:

Proposition. An open ball in F is open.

Proof. Let B(c; r) be an open ball in F, and let $z \in B(c; r)$. We must show there is an open ball about z that is completely contained in B(c; r). Let $\varepsilon := r - |z - c|$, and note that $\varepsilon > 0$ since |z - c| < r.

We claim that $B(z;\varepsilon) \subseteq B(c;r)$. To see this, $w \in B(z;\varepsilon)$. Then

$$d(c, w) = |w - c| = |(w - z) + (z - c)|$$

$$\leq |w - z| + |z - c|$$

$$< \varepsilon + |z - c|$$

$$= r.$$

Here is a picture motivating the above proof:

