
Math 112 lecture for Monday, Week 7

Topology

(Supplemental reading: Section 3.5 in Swanson.)

For the following, let F = R or C.

Definition. The distance between z, w ∈ F is

d(z, w) := |z − w|.

Example. In C, with z = a+ bi and w = c+ di,

d(z, w) =
√

(a− c)2 + (b− d)2.

a− c

b− d

z = a+ bi

w = c+ di

Definition. The open ball centered at z ∈ F of radius r ∈ R > 0 is the subset

B(z; r) := {w ∈ F : |w − z| < r} .

Example.

1. If F = R, then what we have just called a ball is an open interval. For example,
in R, we have B(3; 1) = (2, 4):

(

2

)

43

B(3; 1) = (2, 4) : .

2. Here is a picture of the ball of radius 1 in C centered at 1 + i:
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B(1 + i; 1) :
1 + i

1

.

Definition. A subset U ⊆ F is open if it contains an open ball about each of its
points. This means that for all u ∈ U , there exists ε > 0 such that

B(u; ε) ⊆ U.

A key point here is that the open ball must be entirely contained inside U :

x

ε

U

B(x; ε)

In the above picture, U ⊂ C is the set of all points inside the outer dashed line. Inside
of U , we show a typical point x and an example of an open ball about x completely
contained inside of U . As we test points nearer the border of U , the choice for ε will
need to become smaller.

Example.

1. The empty set ∅ ⊂ F is open.

2. The set F , itself, is open (whether F = R or C). Proof: Given x ∈ F , the open
ball B(x; 1) is contained F .

3. An open interval (a, b) ⊆ R is open. Given c ∈ (a, b), let ε be either c− a or b− c,
whichever is smallest. Then the open interval centered at c and with radius ε is
contained in (a, b). For instance, take the interval (0, 4), and let c = 3. Then (0, 4)
contains the open ball of radius 1 about c, i.e., it contains the interval (2, 4). This
open ball is shown in blue below:
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4. A union of open intervals in R is an open set. In fact, every subset of R is a union
of open intervals. We prove this and the analogous result for C in a proposition
below.

5. In C = R2 the Cartesian product (a, b)× (c, d) is open. (This is a rectangle in R2

not containing its boundary.)

6. The closed interval [1, 2) is not open. The problem is the endpoint 1. We have 1 ∈
[1, 2] but there is no open ball (interval) centered at 1 and contained in [1, 2). Any
open interval about 1 will contain points less that 1 and hence not in the set [1, 2).

7. The closed disc D := {z ∈ C : |z| ≤ 1} is not open. The problem is each of the
points with modulus 1 sitting on the boundary of D. Any open ball about one of
these points will contain points that are not in D, i.e., it will not be completely
contained in D:

z
B(z; ε)

D

Proposition. Every open set in F is a union of open balls.

Proof. Let U ⊆ F be open. Since U is open, for each u ∈ U , there exists εu > 0 such
that

B(u; εu) ⊆ U.

We claim ⋃
u∈U

B(u; εu) = U.

To see this, first let v ∈ ∪u∈UB(u; εu). Then v ∈ B(u; εu) for some u ∈ U (in fact, v ∈
B(v; εv)), and since B(u; εu) ⊆ U , we have v ∈ U . To see the reverse inclusion
let v ∈ U . Then v ∈ B(v; vev), and hence, v is in the union ∪u∈UB(u; εu).
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Proposition. Every nonempty open subset of F has infinitely many elements.

Proof. Let U be a nonempty open subset of F . Since U is nonempty, it contains
some point u. Since U is open, it must contain an open ball B(u; ε) about U . But
every open ball contains infinitely many points. For instance B(u; ε) contains the
points {u+ ε/n : n = 2, 3, 4, . . . }.

Corollary. No nonempty finite set of points is open. In particular, for each z ∈ F ,
the set {z} is not open.

Definition. The set of open sets of F forms a topology on F . This means that

1. ∅ and F are open.

2. An arbitrary union of open sets is open.

3. A finite intersection of open sets is open.

Regarding part 3, note that an infinite intersection of open sets might not be open.
For example,

∞⋂
n=1

B(z; 1/n) = {z}

which is not open (since it is finite). For a more concrete example, note that

∞⋂
n=1

(
− 1

n
,
1

n

)
= {0} .

Definition. A subset C ⊆ F is closed if its complement F \ C is open.

Example.

1. F is closed since F \ F = ∅, and ∅ is open.

2. Similarly ∅ is closed since F \ ∅ = F , and F is open. (Thus, we have seen that F
and ∅ are both open and closed.1)

1If it seems paradoxical to you that there are sets, like the empty set, that are both open and
closed, you are not alone (cf. Hitler learns topology where “null set”= “empty set”, “neighbor-
hood”=“open ball”).
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3. If B ⊆ F is an open ball, the F \B is closed. For instance, if F = R and B = (0; 1),
then

R \ (−1, 1) = (−∞,−1] ∪ [1,∞)

is closed.

4. A closed interval [a, b] in R is closed. That’s because its complement

R \ [a, b] = (−∞, a) ∪ (b,∞)

is open.

5. If z ∈ F , then the set {z} is closed. (Exercise.)

Definition. The closed ball (disc) of radius r centered at z ∈ F is

D(z; r) := {w ∈ F : |w − z| ≤ r} .

Example. In R, closed discs are the same as closed intervals [a, b]. In C taking an
open ball and adding its boundary gives a closed ball.

The following records an argument explained in the accompanying video lecture:

Proposition. An open ball in F is open.

Proof. Let B(c; r) be an open ball in F , and let z ∈ B(c; r). We must show there is
an open ball about z that is completely contained in B(c; r). Let ε := r−|z− c|, and
note that ε > 0 since |z − c| < r.

We claim that B(z; ε) ⊆ B(c; r). To see this, w ∈ B(z; ε). Then

d(c, w) = |w − c| = |(w − z) + (z − c)|

≤ |w − z|+ |z − c|

< ε+ |z − c|

= r.

Here is a picture motivating the above proof:
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ε = r − |z − c|
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