
Math 112 lecture for Friday, Week 7

Sequences II

(Supplemental reading: Sections 8.1 and 8.2 in Swanson.)

Recall the definition of the limit of a sequence of complex numbers: we say limn→∞ an =
a if for all ε > 0 there exists N ∈ R such that n > N implies |a− an| < ε.

To prove a sequence {an} doesn’t have a limit, we need to show that for all a ∈ C,
the limit of {an} is not a. To make sense of what this means in terms of the definition
of the limit, one pointer is that the negation of “for all” is “there exists”, and vice
versa: if it is not true that“for ε > 0, there exists N . . . ”, then there exists ε > 0 such
that for all N . . . The following proposition illustrates this principle.

Proposition. The sequence {(−1)n} = −1, 1,−1, 1, . . . diverges.

Proof. Let a be any complex number. We claim that {(−1)n} does not converge
to a. To see this, let ε = 1, and let N be any real number. There is some even
number n > N , and for this n,

|a− (−1)n| = |a− 1|.

Similarly, these is some odd number n > N , and for this n,

|a− (−1)n| = |a+ 1|.

Next, using the triangle inequality, we see

2 = |(a− 1)− (a+ 1)| ≤ |a− 1|+ | − (a+ 1)| = |a− 1|+ |a+ 1|.

Since 2 ≤ |a − 1| + |a + 1|, at least one of |a − 1| or |a + 1| is greater than or equal
to 1. So it follows that there exists some n > N such that

|a− (−1)n| ≮ ε = 1.

The motivation for the above proof is the following picture:
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There is no way to find a ∈ C that is both close to −1 and close to 1. In the
proof, we applied the triangle inequality to the triangle in the picture to conclude
that the distance from a to at least one of 1 or −1 must be at least 1. That leads to
taking ε = 1. (The argument works by taking any ε such that 0 < ε ≤ 1.)

We next prove a result that will be of great use later on. Start with a number
α ∈ C, and consider the sequence {αn} = α, α2, α3, . . . What is the behavior of this
sequence? Does it converge? The answer depends on the initial choice of α. The
key to unlocking the behavior of the sequence is to consider the polar form of α.
Say α = |α|(cos(θ) + i sin(θ)). Then αn = |α|n(cos(nθ) + i sin(nθ)). So the length of
αn is |α|n and the angle (or argument) of αn is n times the angle of α. So it seems
clear that if |α| > 1, the sequence “diverges to ∞”, spinning as it goes (unless the
angle of α is 0). Similarly, if |α| < 1, the sequence is sucked into the origin. What
if |α| = 1? Then α is a point on the unit circle, and unless arg(α) = 0, the sequence
will perpetually spin around the circle, never converging. See Figure 1.

Figure 1: The sequence {αn} converges to 1 if α = 1, to 0 if |α| < 0, and diverges,
otherwise. The α for which the sequence converges appear in blue.

Proposition. Let α ∈ C and consider the sequence {αn}. There are three cases:

(a) limn→∞ αn = 1 if α = 1;

(b) limn→∞ αn = 0 if |α| < 1;

2



(c) {αn} diverges, otherwise, i.e., if α ̸= 1 and |α| ≥ 1.

Proof. For case (a), where α = 1, we get the constant sequence 1, 1, 1, . . . Last time
we saw that the limit of a constant sequence is just the constant (given ε > 0, we can
take N to be any real number).

For case (b), suppose that |α| < 1. If α = 0, then αn is the constant sequence 0, 0, 0, . . . ,
with limit 0. Otherwise, given ε > 0, we need to find N ∈ R such that if n > N , then

|0− αn| < ε.

This is equivalent to showing that

|α|n < ε.

To find N , we solve for n in the above equation:

|α|n < ε ⇔ ln(|α|n) < ln(ε) ⇔ n ln(|α|) < ln(ε) ⇔ n > ln(ε)/ ln(|α|).

There are a couple of subtleties in the above calculation. In the first step, we used the
fact that taking logs preserves inequalities. This is because the log is an increasing
function: ln(x) < ln(y) if and only if x < y. In the last step of the calculation, the
inequality is reversed since |α| < 1 means that ln(|α|) < 0. To complete the proof
that limn→∞ αn = 0 in this case, let N := ln(ε)/ ln(|α|) and suppose that n > N .
Running the string of implications displayed above in reverse, we see that it follows
that n > N implies

|0− αn| = |α|n < ε,

as required.

The last case is the toughest. Suppose that α ̸= 1 and |α| ≥ 1. We must show
that {αn} is divergent. We prove this by contradiction. Suppose that limn→∞ αn = λ
for some λ ∈ C. Define

ε :=
|α− 1|

2
.

Note that ε > 0 since α ̸= 1. We’ll see below that this particular ε will give us
insurmountable problems, forcing the desired contradiction. Since limn→∞ αn = λ,
there exists N ∈ R such that

n > N =⇒ |λ− αn| < ε =
|α− 1|

2
.

Now, if n > N , it follows that n+ 1 > N , too. Hence,

|λ− αn+1| < |α− 1|
2

.
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Therefore, if n > N , it follows that

|αn+1 − αn| = |(λ− αn)− (λ− αn+1)|
≤ |λ− αn|+ |λ− αn+1| (triangle inequality)

<
|α− 1|

2
+

|α− 1|
2

= |α− 1|,

i.e.,
|αn+1 − αn| < |α− 1|

for all n > N . On the other hand,

|αn+1 − αn| = |α|n|α− 1|
≥ |α− 1| since |α| ≥ 1.

Thus, our assumption that limn→∞ αn = λ has allowed us to show that there is an N
such that n > N implies both

|αn+1 − αn| < |α− 1|

and
|αn+1 − αn| ≥ |α− 1|.

That’s not impossible. So there is no such λ.

Example. The sequence
{(

1+i
2

)n}
converges since∣∣∣∣1 + i

2

∣∣∣∣ = 1

2
|i+ 1| = 1

2

√
12 + 12 =

√
2

2
< 1.

The sequence {in} does not converge since |i| = 1 and i ̸= 1. A picture of the first
sequence appears below:
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