
Math 112 lecture for Wednesday, Week 5

Completeness

(Supplemental reading: Example 2.7 in Swanson.)

We now come to the last axiom we need to characterize the real numbers: complete-
ness. Let F be any ordered field, and let S ⊆ F . To state the axiom, we first need
some vocabulary:

• B ∈ F is an upper bound for S if s ≤ B for all s ∈ S,

• b ∈ F is an lower bound for S if b ≤ s for all s ∈ S,

• S is bounded if it has both an upper bound and a lower bound.

Example. Let S := (0, 1) := {x ∈ R : 0 < x < 1}, a subset of the ordered field R.
Then any number greater than or equal to 1 is an upper bound for S. For exam-
ple, 1, π, 42, and 106 are all upper bounds. Similarly, any number less than or equal
to 0 is a lower bound. For example, 0, −1, −π are all lower bounds. Not every set
has a lower bound. For example, if S = Z, the integers, then S is a subset of the
ordered field R which has neither an upper bound nor a lower bound.

Some more vocabulary:

• B ∈ F is a supremum for S if it is a least upper bound. This means that B is
an upper bound and if B′ is any upper bound, then B ≤ B′. If B exists, then
we write B = sup(S) or B = lub(S).

• b ∈ F is an infimum for S if it is a greatest lower bound. This means that b is
a lower bound and if b′ is any lower bound, then b′ ≤ b. If b exists, then we
write b = inf(S) or b = glb(S).

Examples.

1. If S = (0, 1) ⊂ R, then sup(S) = 1 and inf(S) = 0.

Important: Note that, as in this example, the supremum and infimum
of a set are not necessarily elements in the set.

2. Let S = [0, 1) = {x ∈ R : 0 ≤ x < 1} ⊂ R. Then sup(S) = 1 and inf(S) = 0, as
before. However, this time inf(S) ∈ S while sup(S) /∈ S.
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3. If S = (−2,∞) = {x ∈ R : −2 < x} ⊂ R, then supS does not exist and inf S =
−2.

4. If S = {1/n : n = 1, 2, 3, . . . } ⊂ R, then sup(S) = 1 ∈ S and inf(S) = 0 /∈ S. Note
that in this example, finding the infimum is a way to take a limit of the sequence
of rationals 1, 1/2, 1/3, 1/4, . . .

We’ve just seen that if a set S has a sup or inf, then it may or may not be the
case that either is contained in S. This leads to a bit more vocabulary: if S has a
supremum B and B ∈ S, then we call B the maximum or maximal element of S and
write max(S) = B. Similarly, if S has an infimum b and b ∈ S, then we call b the
minimum of minimal element of S and write min(S) = b.

Example. If S = (0, 1] ⊂ R, then max(S) = 1 and min(S) does not exist and
inf(S) = 0.

Definition. An ordered field F is complete if every nonempty subset of F which is
bounded above has a supremum.

Consider the ordered field of rational numbers, Q, and pick any sequence of rational
numbers converging to π, say by just truncating the decimal expansion, and put these
numbers into a set

S = {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . }.

Each of the numbers in S is rational, e.g., 3.14 = 314
100

. Does this set of rational
numbers have a supremum? The answer depends on which field we are working in.
In R, the answer is “yes”: supS = π (and it’s not in S). However, in Q it does not
have a supremum. To see this, suppose that B ∈ Q. If π < B, then there is a rational
number B′ such that π < B′ < B.1 So B′ is an upper bound for S that is smaller
than B. Therefore, in this case B is not a least upper bound. On the other hand,
if B < π, then there is an element s ∈ S such that B < s (since we can get arbitrarily
close to π by taking the decimal expansion for π and truncating it sufficiently far out).
In this case, B is not an upper bound for S. The rational numbers have this “defect”:
there are nonempty subsets of Q that are bounded above but have no least upper
bound. Thus, both Q and R are ordered fields, but of these two, only R also satisfies
the completeness axiom. (Of course, we have not proved these properties of Q and R
since, in fact, we have not even given definitions for either of these field. Instead, we
are appealing to the reader’s prior experience with these number systems.)

1One way to create B′ is to go out in the decimal expansion for π far enough to get a number
much closer to π than to B, then slightly round up that number by adding 1 to the last decimal
place. The resulting number will be slightly bigger than π and less than B.
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Challenge. Show that an order field is complete if and only if every nonempty subset
of F which is bounded below has an infimum.

Theorem. There exists a unique complete ordered field. By uniqueness, we mean
that if F1 and F2 are complete ordered fields, then there exists a bijection g : F1 → F2

such that for all a, b ∈ F1,

1. g(a+ b) = g(a) + g(b),

2. g(ab) = g(a)g(b),

3. if a > 0, then g(a) > 0.

Proof. We will accept this result on faith for now and possibly return to it later. □

Since g is a bijection, we can think of it as simply a relabeling of the elements of F1:
each element a ∈ F1 is now called g(a) ∈ F2, instead. The listed requirements for g
amount to saying that F1 and F2 are the same ordered fields up to relabeling.

We finally get to our ultimate goal:

Definition. The complete ordered field is called the field of real numbers, denoted R.

While we have not given a construction of the real numbers, the previous theorem
says that anything we can prove about the real numbers may be derived from the
fourteen field axioms, the four order axioms, and the completeness axiom (i.e., that
every nonempty subset that is bounded above has a supremum).

Important vocabulary. We will use the vocabulary introduced in this lecture exten-
sively in the second half of this course. Here is a summary: First there are properties
pertaining to subsets of an ordered field: upper bound, lower bound, bounded, supre-
mum, infimum, maximum, and minimum. Second, there is a property an ordered
field may possess: completeness. Please take a few moments now to review these
terms, trying to come up with your own examples.
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