Math 112 lecture for Friday, Week 5

Extrema

(Supplemental reading: Sections 2.6 and 2.7 in Swanson.)

Before getting to the main propositions for today, we provide some templates for proving statements involving bounds for sets.

Proof template. Define a subset $S \subset \mathbb{R}$ by blah, blah, blah, and let B be the real number blah. Then B is an upper bound for S.

Proof. Let $s \in S$. Then blah, blah, blah. It follows that $s \leq B$.

Proof template. Define a subset $S \subset F$ by blah, blah, blah, and let B be the real number blah. Then $B=\sup S$.

Proof. We first show that B is an upper bound for S. Let $s \in S$. Then blah, blah, blah. It follows $s \leq B$. Next we show that B is a least upper bound for S. Suppose that B^{\prime} is an upper bound for S. Then blah, blah, blah. It follows that $B \leq B^{\prime}$.

An alternative, to the preceding template, which is sometimes easy to use:
Proof template. Define a subset $S \subset \mathbb{R}$ by blah, blah, blah, and let B be the real number blah. Then $B=\sup S$.

Proof. We first show that B is an upper bound for S. Let $s \in S$. Then blah, blah, blah. It follows $s \leq B$. Next we show that B is a least upper bound for S. Suppose $B^{\prime}<B$. Then B^{\prime} is not an upper bound for S since blah, blah, blah.

The templates for lower bounds and infima are similar.

Example. Claim: Let $S=(-\infty, 1)$. Then $\sup (S)=1$.
Proof. We first show that 1 is an upper bound for S. This follows immediately from the definition of $S=(-\infty, 1):=\{x \in \mathbb{R}: x<1\}$. So if $s \in S$ then $s<1$. Next, we show that 1 is a least upper bound for S. Suppose $x<1$. Then $(x+1) / 2$, the midpoint between x and 1 , is an element of S and is greater than x, it follows that x is not an upper bound for S. In sum, 1 is an upper bound for S and anything smaller then 1 is not an upper bound. So $1=\sup (S)$.

We move on now to our main results for this lecture. The last two are especially interesting and important for what is to come.

Suppose F is an ordered field and $S \subseteq F$. Define the subset $-S \subseteq F$ by

$$
-S:=\{-s: s \in S\} .
$$

For instance, if $S=(2,5) \subset \mathbb{R}$, then $-S=(-5,-2)$. By our first proposition, below, $\inf (-S)=-5=-\sup (S)$. Note that, in general, $-(-S)=S$.

Proposition 1. Using the notation from above,
(a) if $\inf (-S)$ exists, then $\sup (S)$ exists and $\sup (S)=-\inf (-S)$;
(b) if $\sup (S)$ exists, then $\inf (-S)$ exists and $\inf (-S)=-\sup (S)$.

Proof. We will just prove the first part, the second being similar. Suppose that $\inf (-S)$ exists, and for ease of notation, let $t=\inf (-S)$. We must show that $\sup (S)$ exists and $\sup (S)=-t$. We first show that $-t$ is an upper bound for S. Take $s \in S$. Then $-s \in-S$, and so it follows that $t \leq-s$ (by definition of $\inf (-S)$). It follows that $-t \geq s$. Hence, $-t$ is an upper bound for S. Next, suppose that x is any upper bound for S. We first claim that $-x$ is a lower bound for $-S$: given $y \in-S$, we have $-y \in S$, and hence, $x \geq-y$ (since x is an upper bound for S). It follows that $-x \leq y$. We have shown that $-x$ is a lower bound for $-S$. Since $t=\inf (-S)$ is the greatest lower bound for $-S$, we have $-x \leq t$. From this, it follows that $x \geq-t$. We have shown that $-t$ is the least upper bound for S, i.e., $-t=-\inf (-S)=$ $\sup (S)$.

For the next proposition, recall that an ordered field is complete if each of its nonempty subsets that is bounded above has a least upper bound, i.e., a supremum.

Proposition 2. Let F be an ordered field, and suppose that every nonempty subset of F that is bounded below has an infimum. Then F is complete.

Proof. Let $\emptyset \neq S \subseteq F$, and suppose S is bounded above, say by $B \in F$. We would like to show that S has a supremum. First, note that $-B$ is a lower bound for $-S$: if $x \in-S$, then $-x \in S$, and hence, $B \geq-x$. It follows that $-B \leq x$. Next, since $-S$ is bounded below, by hypothesis, $-S$ has an infimum $\inf (-S)$. Then by Proposition 1, we see that $\sup (S)$ exists (and is equal to $-\inf (-S)$). We have shown that every nonempty subset of F that is bounded above has a least upper bound, i.e., F is complete.

The next result shows that there are no infinitely small positive elements in any ordered field!

Proposition 3 (No infinitesimals.) Let F be an ordered field. Let $x \in F$ and suppose that

$$
0 \leq x \leq y
$$

for all $y \in F$ with $y>0$. Then $x=0$. In other words, the only nonnegative element of F that is less than or equal to all the positive elements of F is 0 . No positive element of F can be less than or equal to all the positive elements of F.

Proof. Since $x \geq 0$, by trichotomy there are two possibilities: $x>0$ or $x=0$. For sake of contradiction, suppose that $x>0$. Then let $y:=x / 2$. Below, using the order axioms, we will prove that $y<x$ and $y>0$ in contradiction to the hypotheses concerning x, i.e., that $0 \leq x \leq y$ for $y>0$. The only possibility then left is that $x=0$, as desired.
The reasoning we just used for y is clearly in agreement with our experience with the rational or real numbers. However, we are working in an arbitrary ordered field. So we now check that, in general, if $x>0$ and $y=x / 2$, then $y<x$ and $y>0$.
We have already shown that since F is an ordered field, $1>0$. By additive translation, adding 1 to both sides of the inequality, we get $2:=1+1>1$. By transitivity, $2>$ $1>0$ implies $2>0$. Therefore, $2 \neq 0$ (again by trichotomy). The point of all of the above is that $2 \neq 0$, and hence has a multiplicative inverse, which we naturally denote by $1 / 2$. Why is $1 / 2>0$, necessarily? Answer: by trichotomy, either $1 / 2=0$, $1 / 2<0$, or $1 / 2>0$. We rule out the first two possibilities. If $1 / 2=0$, then $1=$ $2 \cdot(1 / 2)=2 \cdot 0=0$. But $1 \neq 0$ in a field. If $1 / 2<0$, then multiplying through $2>0$ by $1 / 2$ would yield $1<0$, which we saw in an earlier lecture is impossible.
Continuing: since $2>1$, multiplicative translation by $1 / 2$ gives $1>1 / 2$. Then multiplicative translation by $x>0$ gives $x>x / 2$, i.e., $x>y$. Finally, to see that $y>$ 0 , start with $x>0$. Multiplicative translation by $1 / 2>0$ yields $x / 2>(1 / 2) \cdot 0=0$, i.e., $y>0$.

The next proposition will be very useful later on. It says that if a set has a supremum, then even if the supremum is not an element of the set, then if can be approximated arbitrarily closely with an element of the set. For example, consider the interval $S:=$ $(0,1) \subset \mathbb{R}$. Then $\sup (S)=1 \notin S$. Can we approximate $\sup (S)$ to within a tolerance of $\varepsilon:=0.001$ by an element in the set? Sure: take $x:=1-0.0001=0.9999$, for instance. Then $x \in S$ and is within 0.001 of the supremum, 1 .

Proposition 4. Let S be a subset of an ordered field F, and suppose that $M:=\sup S$ exists. Given $\varepsilon \in F$ with $\varepsilon>0$, there exists $s \in S$ such that $M-s<\varepsilon$.

Proof. To help with understanding this proof, here is a picture for the case where S is an interval in $F=\mathbb{R}$:

Let $s \in S$. Note that the statement $M-s<\varepsilon$ is equivalent to the statement $M-\varepsilon<s$. Further, if either of these statements holds, then since $M=\sup (S)$ and $s \in S$ it follows that, in addition to $M-\varepsilon<s$, we have $s \leq M$, i.e., s is in the interval $(M-\varepsilon, M]$. Thus, we are trying to argue that for any $\varepsilon>0$, we can find an s in S that's between $M-\varepsilon$ and M. Of course, if $M \in S$, we could take $M=s$, but it's not always the case that a set contains its supremum.
The proof starts here. By the additive translation order axiom, we can add $M-\varepsilon$ to both sides of the inequality $0<\varepsilon$ to get

$$
(M-\varepsilon)+0<(M-\varepsilon)+\varepsilon .
$$

Using associativity and addition and the definition of the additive inverse $-\varepsilon$, we see that

$$
M-\varepsilon<M .
$$

Since M is the least upper bound of S, we know that if M^{\prime} is an upper bound of S, then $M \leq M^{\prime}$. In particular, $M-\varepsilon$ cannot be an upper bound of S because $M-\varepsilon<M$. (In other words, since $M-\varepsilon$ is strictly smaller than the least upper bound, it cannot be an upper bound.) The fact that $M-\varepsilon$ is not an upper bound of S, means there exists some $s \in S$ such that $M-\varepsilon<s$. We now add $\varepsilon-s$ to both sides of this inequality to obtain the desired inequality:

$$
M-s=(M-\varepsilon)+(\varepsilon-s)<s+(\varepsilon-s)=\varepsilon
$$

To summarize: since $M-\varepsilon$ is strictly smaller than the least upper bound of S, it cannot be an upper bound for S. This means that there exists some $s \in S$ such that $M-\varepsilon<s$, and the result follows.

A similar proposition holds for infima.

