Math 112 lecture for Friday, Week 5

EXTREMA
(Supplemental reading: Sections 2.6 and 2.7 in Swanson.)

Before getting to the main propositions for today, we provide some templates for
proving statements involving bounds for sets.

Proof template. Define a subset S C R by blah, blah, blah, and let B be the real
number blah. Then B is an upper bound for S.

Proof. Let s € S. Then blah, blah, blah. It follows that s < B. O

Proof template. Define a subset S C F by blah, blah, blah, and let B be the real
number blah. Then B = sup S.

Proof. We first show that B is an upper bound for S. Let s € S. Then blah, blah,
blah. It follows s < B. Next we show that B is a least upper bound for S. Suppose
that B’ is an upper bound for S. Then blah, blah, blah. It follows that B < B’. [

An alternative, to the preceding template, which is sometimes easy to use:

Proof template. Define a subset S C R by blah, blah, blah, and let B be the real
number blah. Then B =sup S.

Proof. We first show that B is an upper bound for S. Let s € S. Then blah,
blah, blah. It follows s < B. Next we show that B is a least upper bound for S.
Suppose B’ < B. Then B’ is not an upper bound for S since blah, blah, blah. O

The templates for lower bounds and infima are similar.

Example. Claim: Let S = (—o00,1). Then sup(S) = 1.

Proof. We first show that 1 is an upper bound for S. This follows immediately from
the definition of S = (—00,1) := {r e R: 2z < 1}. Soif s € S then s < 1. Next,
we show that 1 is a least upper bound for S. Suppose x < 1. Then (z + 1)/2, the
midpoint between z and 1, is an element of S and is greater than z, it follows that x
is not an upper bound for S. In sum, 1 is an upper bound for S and anything smaller
then 1 is not an upper bound. So 1 = sup(S). O]



We move on now to our main results for this lecture. The last two are especially
interesting and important for what is to come.

Suppose F'is an ordered field and S C F. Define the subset —S C F' by
-5 :={-s:s€S5}.

For instance, if S = (2,5) C R, then —S = (—5,—2). By our first proposition,
below, inf(—S) = —5 = —sup(S). Note that, in general, —(—S5) = S.

Proposition 1. Using the notation from above,
(a) if inf(—9) exists, then sup(S) exists and sup(S) = — inf(—5);
(b) if sup(S) exists, then inf(—95) exists and inf(—S) = —sup(.5).

Proof. We will just prove the first part, the second being similar. Suppose that inf(—295)
exists, and for ease of notation, let ¢ = inf(—S). We must show that sup(S) exists
and sup(S) = —t. We first show that —t is an upper bound for S. Take s € S.
Then —s € —S, and so it follows that t < —s (by definition of inf(—S5)). It follows
that —t > s. Hence, —t is an upper bound for S. Next, suppose that x is any upper
bound for S. We first claim that —z is a lower bound for —5: given y € —S5, we
have —y € S, and hence, © > —y (since x is an upper bound for S). It follows
that —x < y. We have shown that —z is a lower bound for —S. Since ¢t = inf(—S) is
the greatest lower bound for —S, we have —x < t. From this, it follows that z > —t.
We have shown that —t is the least upper bound for S, ie., —t = —inf(-S5) =
sup(.9). O

For the next proposition, recall that an ordered field is complete if each of its nonempty
subsets that is bounded above has a least upper bound, i.e., a supremum.

Proposition 2. Let F' be an ordered field, and suppose that every nonempty subset
of F' that is bounded below has an infimum. Then F' is complete.

Proof. Let ) # S C F, and suppose S is bounded above, say by B € F. We would
like to show that S has a supremum. First, note that —B is a lower bound for —S:
if v € =5, then —x € S, and hence, B > —z. It follows that —B < x. Next,
since —S is bounded below, by hypothesis, —S has an infimum inf(—S). Then by
Proposition 1, we see that sup(S) exists (and is equal to —inf(—S5)). We have shown
that every nonempty subset of I’ that is bounded above has a least upper bound,
i.e., F'is complete. [



The next result shows that there are no infinitely small positive elements in any
ordered field!

Proposition 3 (No infinitesimals.) Let F' be an ordered field. Let x € F' and suppose
that
0<z<y

for all y € F with y > 0. Then x = 0. In other words, the only nonnegative element
of F' that is less than or equal to all the positive elements of F' is 0. No positive
element of F' can be less than or equal to all the positive elements of F'.

Proof. Since x > 0, by trichotomy there are two possibilities: x > 0 or z = 0. For
sake of contradiction, suppose that x > 0. Then let y := x/2. Below, using the
order axioms, we will prove that y < z and y > 0 in contradiction to the hypotheses
concerning z, i.e., that 0 < x < y for y > 0. The only possibility then left is
that x = 0, as desired.

The reasoning we just used for y is clearly in agreement with our experience with the
rational or real numbers. However, we are working in an arbitrary ordered field. So
we now check that, in general, if x > 0 and y = /2, then y < z and y > 0.

We have already shown that since F'is an ordered field, 1 > 0. By additive translation,
adding 1 to both sides of the inequality, we get 2 := 1+ 1 > 1. By transitivity, 2 >
1 > 0 implies 2 > 0. Therefore, 2 # 0 (again by trichotomy). The point of all of
the above is that 2 # 0, and hence has a multiplicative inverse, which we naturally
denote by 1/2. Why is 1/2 > 0, necessarily? Answer: by trichotomy, either 1/2 = 0,
1/2 < 0, or 1/2 > 0. We rule out the first two possibilities. If 1/2 = 0, then 1 =
2-(1/2)=2-0=0. But 1 # 0 in a field. If 1/2 < 0, then multiplying through 2 > 0
by 1/2 would yield 1 < 0, which we saw in an earlier lecture is impossible.

Continuing: since 2 > 1, multiplicative translation by 1/2 gives 1 > 1/2. Then
multiplicative translation by > 0 gives x > z/2, i.e., x > y. Finally, to see that y >
0, start with > 0. Multiplicative translation by 1/2 > 0 yields /2 > (1/2) - 0 = 0,
Le, y>0. [

The next proposition will be very useful later on. It says that if a set has a supremum,
then even if the supremum is not an element of the set, then if can be approximated
arbitrarily closely with an element of the set. For example, consider the interval S :=
(0,1) C R. Then sup(S) =1 ¢ S. Can we approximate sup(S) to within a tolerance
of ¢ := 0.001 by an element in the set? Sure: take x := 1 — 0.0001 = 0.9999, for
instance. Then z € S and is within 0.001 of the supremum, 1.

Proposition 4. Let S be a subset of an ordered field F', and suppose that M := sup S
exists. Given ¢ € F with € > 0, there exists s € S such that M — s < e.
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Proof. To help with understanding this proof, here is a picture for the case where S
is an interval in F' = R:

T~
~

Let s € S. Note that the statement M — s < ¢ is equivalent to the statement
M — ¢ < s. Further, if either of these statements holds, then since M = sup(S5)
and s € S it follows that, in addition to M — e < s, we have s < M, i.e., s is in the
interval (M — e, M]. Thus, we are trying to argue that for any ¢ > 0, we can find
an s in S that’s between M — e and M. Of course, if M € S, we could take M = s,
but it’s not always the case that a set contains its supremum.

The proof starts here. By the additive translation order axiom, we can add M — ¢ to
both sides of the inequality 0 < € to get

(M —e)+0< (M —¢)+e.

Using associativity and addition and the definition of the additive inverse —e, we see
that
M —e < M.

Since M 1is the least upper bound of S, we know that if M’ is an upper bound
of S, then M < M'. In particular, M — e cannot be an upper bound of S because
M — e < M. (In other words, since M — ¢ is strictly smaller than the least upper
bound, it cannot be an upper bound.) The fact that M — ¢ is not an upper bound
of S, means there exists some s € S such that M —e < s. We now add € — s to both
sides of this inequality to obtain the desired inequality:

M—-—s=(M-e)+(e—s)<s+(e—s)=ce.

To summarize: since M — ¢ is strictly smaller than the least upper bound of S, it
cannot be an upper bound for S. This means that there exists some s € S such
that M — e < s, and the result follows. O

A similar proposition holds for infima.



