
Math 112 lecture for Friday, Week 5

Extrema

(Supplemental reading: Sections 2.6 and 2.7 in Swanson.)

Before getting to the main propositions for today, we provide some templates for
proving statements involving bounds for sets.

Proof template. Define a subset S ⊂ R by blah, blah, blah, and let B be the real
number blah. Then B is an upper bound for S.

Proof. Let s ∈ S. Then blah, blah, blah. It follows that s ≤ B.

Proof template. Define a subset S ⊂ F by blah, blah, blah, and let B be the real
number blah. Then B = supS.

Proof. We first show that B is an upper bound for S. Let s ∈ S. Then blah, blah,
blah. It follows s ≤ B. Next we show that B is a least upper bound for S. Suppose
that B′ is an upper bound for S. Then blah, blah, blah. It follows that B ≤ B′.

An alternative, to the preceding template, which is sometimes easy to use:

Proof template. Define a subset S ⊂ R by blah, blah, blah, and let B be the real
number blah. Then B = supS.

Proof. We first show that B is an upper bound for S. Let s ∈ S. Then blah,
blah, blah. It follows s ≤ B. Next we show that B is a least upper bound for S.
Suppose B′ < B. Then B′ is not an upper bound for S since blah, blah, blah.

The templates for lower bounds and infima are similar.

Example. Claim: Let S = (−∞, 1). Then sup(S) = 1.

Proof. We first show that 1 is an upper bound for S. This follows immediately from
the definition of S = (−∞, 1) := {x ∈ R : x < 1}. So if s ∈ S then s < 1. Next,
we show that 1 is a least upper bound for S. Suppose x < 1. Then (x + 1)/2, the
midpoint between x and 1, is an element of S and is greater than x, it follows that x
is not an upper bound for S. In sum, 1 is an upper bound for S and anything smaller
then 1 is not an upper bound. So 1 = sup(S).
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We move on now to our main results for this lecture. The last two are especially
interesting and important for what is to come.

Suppose F is an ordered field and S ⊆ F . Define the subset −S ⊆ F by

−S := {−s : s ∈ S} .

For instance, if S = (2, 5) ⊂ R, then −S = (−5,−2). By our first proposition,
below, inf(−S) = −5 = − sup(S). Note that, in general, −(−S) = S.

Proposition 1. Using the notation from above,

(a) if inf(−S) exists, then sup(S) exists and sup(S) = − inf(−S);

(b) if sup(S) exists, then inf(−S) exists and inf(−S) = − sup(S).

Proof. We will just prove the first part, the second being similar. Suppose that inf(−S)
exists, and for ease of notation, let t = inf(−S). We must show that sup(S) exists
and sup(S) = −t. We first show that −t is an upper bound for S. Take s ∈ S.
Then −s ∈ −S, and so it follows that t ≤ −s (by definition of inf(−S)). It follows
that −t ≥ s. Hence, −t is an upper bound for S. Next, suppose that x is any upper
bound for S. We first claim that −x is a lower bound for −S: given y ∈ −S, we
have −y ∈ S, and hence, x ≥ −y (since x is an upper bound for S). It follows
that −x ≤ y. We have shown that −x is a lower bound for −S. Since t = inf(−S) is
the greatest lower bound for −S, we have −x ≤ t. From this, it follows that x ≥ −t.
We have shown that −t is the least upper bound for S, i.e., −t = − inf(−S) =
sup(S).

For the next proposition, recall that an ordered field is complete if each of its nonempty
subsets that is bounded above has a least upper bound, i.e., a supremum.

Proposition 2. Let F be an ordered field, and suppose that every nonempty subset
of F that is bounded below has an infimum. Then F is complete.

Proof. Let ∅ ̸= S ⊆ F , and suppose S is bounded above, say by B ∈ F . We would
like to show that S has a supremum. First, note that −B is a lower bound for −S:
if x ∈ −S, then −x ∈ S, and hence, B ≥ −x. It follows that −B ≤ x. Next,
since −S is bounded below, by hypothesis, −S has an infimum inf(−S). Then by
Proposition 1, we see that sup(S) exists (and is equal to − inf(−S)). We have shown
that every nonempty subset of F that is bounded above has a least upper bound,
i.e., F is complete.
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The next result shows that there are no infinitely small positive elements in any
ordered field!

Proposition 3 (No infinitesimals.) Let F be an ordered field. Let x ∈ F and suppose
that

0 ≤ x ≤ y

for all y ∈ F with y > 0. Then x = 0. In other words, the only nonnegative element
of F that is less than or equal to all the positive elements of F is 0. No positive
element of F can be less than or equal to all the positive elements of F .

Proof. Since x ≥ 0, by trichotomy there are two possibilities: x > 0 or x = 0. For
sake of contradiction, suppose that x > 0. Then let y := x/2. Below, using the
order axioms, we will prove that y < x and y > 0 in contradiction to the hypotheses
concerning x, i.e., that 0 ≤ x ≤ y for y > 0. The only possibility then left is
that x = 0, as desired.

The reasoning we just used for y is clearly in agreement with our experience with the
rational or real numbers. However, we are working in an arbitrary ordered field. So
we now check that, in general, if x > 0 and y = x/2, then y < x and y > 0.

We have already shown that since F is an ordered field, 1 > 0. By additive translation,
adding 1 to both sides of the inequality, we get 2 := 1 + 1 > 1. By transitivity, 2 >
1 > 0 implies 2 > 0. Therefore, 2 ̸= 0 (again by trichotomy). The point of all of
the above is that 2 ̸= 0, and hence has a multiplicative inverse, which we naturally
denote by 1/2. Why is 1/2 > 0, necessarily? Answer: by trichotomy, either 1/2 = 0,
1/2 < 0, or 1/2 > 0. We rule out the first two possibilities. If 1/2 = 0, then 1 =
2 · (1/2) = 2 · 0 = 0. But 1 ̸= 0 in a field. If 1/2 < 0, then multiplying through 2 > 0
by 1/2 would yield 1 < 0, which we saw in an earlier lecture is impossible.

Continuing: since 2 > 1, multiplicative translation by 1/2 gives 1 > 1/2. Then
multiplicative translation by x > 0 gives x > x/2, i.e., x > y. Finally, to see that y >
0, start with x > 0. Multiplicative translation by 1/2 > 0 yields x/2 > (1/2) · 0 = 0,
i.e., y > 0.

The next proposition will be very useful later on. It says that if a set has a supremum,
then even if the supremum is not an element of the set, then if can be approximated
arbitrarily closely with an element of the set. For example, consider the interval S :=
(0, 1) ⊂ R. Then sup(S) = 1 /∈ S. Can we approximate sup(S) to within a tolerance
of ε := 0.001 by an element in the set? Sure: take x := 1 − 0.0001 = 0.9999, for
instance. Then x ∈ S and is within 0.001 of the supremum, 1.

Proposition 4. Let S be a subset of an ordered field F , and suppose thatM := supS
exists. Given ε ∈ F with ε > 0, there exists s ∈ S such that M − s < ε.
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Proof. To help with understanding this proof, here is a picture for the case where S
is an interval in F = R:

( )

MM − ε

Let s ∈ S. Note that the statement M − s < ε is equivalent to the statement
M − ε < s. Further, if either of these statements holds, then since M = sup(S)
and s ∈ S it follows that, in addition to M − ε < s, we have s ≤ M , i.e., s is in the
interval (M − ε,M ]. Thus, we are trying to argue that for any ε > 0, we can find
an s in S that’s between M − ε and M . Of course, if M ∈ S, we could take M = s,
but it’s not always the case that a set contains its supremum.

The proof starts here. By the additive translation order axiom, we can add M − ε to
both sides of the inequality 0 < ε to get

(M − ε) + 0 < (M − ε) + ε.

Using associativity and addition and the definition of the additive inverse −ε, we see
that

M − ε < M.

Since M is the least upper bound of S, we know that if M ′ is an upper bound
of S, then M ≤ M ′. In particular, M − ε cannot be an upper bound of S because
M − ε < M . (In other words, since M − ε is strictly smaller than the least upper
bound, it cannot be an upper bound.) The fact that M − ε is not an upper bound
of S, means there exists some s ∈ S such that M − ε < s. We now add ε− s to both
sides of this inequality to obtain the desired inequality:

M − s = (M − ε) + (ε− s) < s+ (ε− s) = ε.

To summarize: since M − ε is strictly smaller than the least upper bound of S, it
cannot be an upper bound for S. This means that there exists some s ∈ S such
that M − ε < s, and the result follows.

A similar proposition holds for infima.
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