
Math 112 lecture for Friday, Week 4

Field axioms

(Supplemental reading: Example 2.6 in Swanson.)

Our next goal is to make a short, complete list of the rules characterizing the real
numbers. Anything that can be said about the real numbers will follow from these
rules, and, roughly, the real numbers is the only object that satisfies these rules.
There will be three parts: (i) the nine field axioms, (ii) the four order axioms, and
(iii) the completeness axiom. For right now, we will concentrate on the field axioms.

Definition. A field is a set F with two operations1:

+ :F × F → F (addition) and · :F × F → F (multiplication),

satisfying the following axioms:

A1. Addition is commutative. For all x, y ∈ F ,

x+ y = y + x.

A2. Addition is associative. For all x, y, z ∈ F ,

(x+ y) + z = x+ (y + z).

A3. There is an additive identity. There is an element of F , usually denoted 0, such
that for all x ∈ F ,

x+ 0 = x.

A4. There are additive inverses. For all x ∈ F , there is an element y ∈ F such that

x+ y = 0.

The element y is denoted −x. Thus,−x is the element of F which when added
to x yields 0. (Subtraction is then defined by x−y := x+(−y) for all x, y ∈ F .)

M1. Multiplication is commutative. For all x, y ∈ F ,

xy = yx.

1In this context, “operation” is just another word for “function”. Our functions take an ordered
pair of elements of F and return another element of F .
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M2. Multiplication is associative. For all x, y, z ∈ F ,

(xy)z = x(yz).

M3. There is a multiplicative identity. There is an element, usually denoted 1, such
that:

(a) 1 ̸= 0, and

(b) 1x = x for all x ∈ F .

M4. There are multiplicative inverses. For each nonzero x ∈ F , there is a y ∈ F
such that

xy = 1.

The element y is denoted 1/x or x−1. Thus, 1/x is the element of F which
when multiplied by x yields 1. (Division is then defined by x/y := xy−1 for
nonzero y.)

D. Multiplication distributes over addition. For all x, y, z ∈ F ,

x(y + z) = xy + xz.

Thus, there are four field axioms governing addition, four governing multiplication,
and one dictating how addition and multiplication interact.

Remark. The axioms for addition and multiplication are quite similar. Here are
two subtle things to notice, however: (i) by definition, the additive and multiplicative
identities are not equal (0 ̸= 1), and (ii) only nonzero elements of a field are required
to have multiplicative inverses.

Examples. The examples of fields with which you are most familiar are the ratio-
nals, Q, and the reals, R. Later in this course, we will consider the field of complex
numbers, C. It turns out that Z/nZ, with the addition and multiplication we defined
earlier, is a field if and only if n is a prime number.2 The only axiom that is not
satisfied by Z/nZ for general n is the existence of multiplicative inverses for nonzero
elements (M4).

2Indeed, although Z/nZ has many uses, the only two reasons it was introduced in this course is
to help with the understanding of equivalence relations and field axioms.
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Consider the addition and multiplication tables for Z/5Z and Z/6Z (where we write k
instead of [k] for each equivalence class):

Z/5Z

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Z/6Z

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 5 2 0 4 2
5 0 5 4 3 2 1

.

The additive identity for Z/5Z is [0]. Note that axiom A3 says the identity is usually
denoted 0, and we will often do that in the case of Z/nZ, but note that in the
case of Z/5Z, for instance, 0 is really [0] = {. . . ,−10,−5, 0, 5, 10, . . . }. The additive
identity for Z/6Z is [0] = {. . . ,−12,−6, 0, 6, 12, . . . }, again, an infinite set.

Commutativity of addition and multiplication for Z/nZ can seen in the above exam-
ples via the symmetry of the addition and multiplication tables about the northwest-
to-southeast diagonal.

Here is an important point: if x is an element of a field, then −x is defined to
be the additive inverse of x, i.e., the field element which when added to x gives
the additive identity, 0. Similarly, if x is nonzero, then 1/x is defined to be the
multiplicative inverse of x, i.e., the field element which when multiplied by x gives
the multiplicative identity 1. For instance, since [2][3] = [1] in Z/5Z, we have that

1

[2]
= [3] and

1

[3]
= [2].

If we know that we are working in Z/5Z, we might abbreviate these to 1/2 = 3
and 1/3 = 2.

Note that every nonzero element of Z/5Z has a multiplicative inverse. (It turns out
that Z/5Z satisfies all of the field axioms.) On the other hand, the only nonzero
elements of Z/6Z with multiplicative inverses are 1 and 5. You can see this in the
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multiplication table, above: only the columns for 1 and 5 contain 1s. (In general, the
nonzero elements of Z/nZ with multiplicative inverses turn out to be [k] such that k
and n share no prime factors in common.)

A final fun fact: the smallest field is Z/2Z. Every field needs an additive identity, 0
and a distinct multiplicative identity 1, and Z/2Z has no elements besides these.

Non-examples.

• The set of natural numbers, N = {0, 1, 2, . . . } with its usual addition and mul-
tiplication does not form a field. It violates axioms A4 and M4 (the existence of
additive and multiplicative inverses). For instance, no natural number besides 0
has an additive inverse (0 is its own additive inverse), and no natural number
besides 1 has a multiplicative inverse.

• The set of integers, Z, satisfies all of the axioms except M4: no integers be-
sides ±1 have multiplicative inverses.

• Consider the set X := R\Q with ordinary addition and multiplication. Then X
is not a field. For instance, it does not have an additive or a multiplicative
identity since both 0 and 1 are elements of Q. There is another serious problem.
Consider the elements ±

√
2 ∈ X. We have −

√
2 +

√
2 = 0 /∈ X. So addition is

not defined for X (recall that addition for X would be a function X ×X → X,
so the result of the sum of two elements of X must be an element of X).

As said earlier, everything that can be known about the real numbers follows from
the fact that the reals satisfy the field axioms (along with the order axioms and the
completeness axiom, which we will examine later). For instance, we all know that
if x is a real number then x · 0 = 0. But why is that? Can you prove it? Note that
it is not one of the field axioms. The following proposition shows that this result
holds in any field (including, for example, Z/5Z). One may think of this as a game:
the nine field axioms are the rules, and you need to use them to show x · 0 = 0. It
is surprisingly tricky (see the first displayed line of the proof—how could one know
that’s a reasonable first step?)!

Proposition. Let F be a field, and let x ∈ F . Then x · 0 = 0.

Proof. We have

x · 0 = x(0 + 0) (since 0 is the additive identity)

= x · 0 + x · 0 (distributivity).

4



Since F is a field, we know x · 0 ∈ F and hence has an additive inverse −(x · 0).
Continuing from above,

x · 0 = x · 0 + x · 0
⇒ −(x · 0) + x · 0 = −(x · 0) + (x · 0 + x · 0)
⇒ 0 = −(x · 0) + (x · 0 + x · 0) (definition of additive inverse)

⇒ 0 = (−(x · 0) + x · 0) + x · 0 (associativity of addition)

⇒ 0 = 0 + x · 0 (definition of additive inverse)

⇒ 0 = x · 0 (0 is the additive identity).
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