Math 112 lecture for Monday, Week 2

MORE SETS

Template.

Proposition If ... some hypotheses go here ..., then

$$A = B$$
.

Proof. Let $a \in A$. Then [use hypothesese, definitions, calculations here]. Therefore, $a \in B$. Hence, $A \subseteq B$.

Conversely, let $b \in B$. Then [use hypothesese, definitions, calculations here]. Therefore, $b \in A$. Hence, $B \subseteq A$, too. Therefore, A = B.

An example:

Proposition Let A and B be sets, and let $C := A \cup B$. Suppose $A \cap B = \emptyset$. Then

$$A = C \setminus B$$
.

Proof. Let $a \in A$. Then $a \in C = A \cup B$. Since $A \cap B = \emptyset$ and $a \in A$, it follows that $a \notin B$. In sum, $a \in C$ and $a \notin B$. Therefore, $a \in C \setminus B$.

Conversely, let $x \in C \setminus B$. This means that $x \in C$ and $x \notin B$. But $x \in C = A \cup B$, means that $x \in A$ or $x \in B$. Since $x \notin B$, it follows that $x \in A$.

Indexed unions and intersections. Let I be a set, and suppose that for each $i \in I$, you are given a set A_i . Then by definition,

$$\bigcup_{i \in I} A_i := \{x : x \in A_i \text{ for some } i \in I\}$$

$$\bigcap_{i \in I} A_i := \{x : x \in A_i \text{ for all } i \in I\}.$$

If $I = \mathbb{N}$, we might write $\bigcup_{i=1}^{\infty} A_i$ in place of $\bigcup_{i \in \mathbb{N}^+} A_i$, and similarly for intersections. In that case, your can think of these operations as follows:

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup \cdots$$

$$\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap \cdots$$

Examples.

- 1. For each $n \in \mathbb{N}^+$, let $A_n = [0, 1/n)$. Then
 - (a) $\bigcup_{n \in \mathbb{N}^+} A_n = [0, 1)$.
 - (b) $\cap_{n \in \mathbb{N}^+} A_n = \{0\}.$
- $2. \cup_{r \in \mathbb{R}} \{r\} = \mathbb{R}.$

We will prove $\cap_{n\in\mathbb{N}^+}A_n=\{0\}$. We need to show these two sets are equal, so we show inclusions in both directions. I find that when possible, it helps to first get an intuitive grasp by writing out the indexed intersection long-hand:

$$\bigcap_{n \in \mathbb{N}^+} A_n = \bigcap_{n \in \mathbb{N}^+} [0, 1/n) = [0, 1) \cap [0, 1/2) \cap [0, 1/3) \cap \cdots$$

Each successive interval is contained in the preceding one. So the intersection is getting smaller as we go out in the chain. Now for a formal proof:

Proof. Let $x \in \bigcap_{n \in \mathbb{N}^+} A_n$. Then $x \in A_n = [0, 1/n)$ for all $n \in \mathbb{N}$. Thus,

$$0 \le x < \frac{1}{n}.$$

This means that x = 0 (which we won't prove here). Therefore, $x \in \{0\}$. We have shown the inclusion

$$\cap_{n\in\mathbb{N}^+}A_n\subseteq\{0\}.$$

For the opposite inclusion: there is only one element of $\{0\}$, namely 0, and $0 \in [0, 1/n)$ for $n = 1, 2, \ldots$ Therefore, $0 \in \bigcap_{n \in \mathbb{N}^+} A_n$, and hence

$$\{0\} \subseteq \cap_{n \in \mathbb{N}^+} A_n.$$

Having shown both inclusions, we know the sets are equal.

CARTESIAN PRODUCTS

Definition. The Cartesian product of sets A and B is

$$A \times B := \{(a, b) : a \in A \text{ and } b \in B\}.$$

By (a, b) we mean an "ordered pair". (Formally, we could define $(a, b) := \{a, \{a, b\}\}.$) For example, $(1, 2) \neq (2, 1)$, whereas $\{1, 2\} = \{2, 1\}$. By definition,

$$(a,b) = (a',b')$$
 exactly when $a = a$ and $b = b'$.

Examples.

1. Let $A = \{\checkmark, \star\}$ and $B = \{1, 2, 3\}$. Then

$$A \times B = \{ (\checkmark, 1), (\checkmark, 2), (\checkmark, 3), (\star, 1), (\star, 2), (\star, 3) \}.$$

2. Let $A = [1,2] \subset \mathbb{R}$ and $B = [1,3] \subset \mathbb{R}$. Then

$$A \times B = \{(a, b) : 1 \le a \le 2 \text{ and } 1 \le b \le 3\}.$$

This is a rectangle in the plane \mathbb{R}^2 :

3. Let $A = B = \mathbb{R}$. Then $A \times B = \mathbb{R}^2$, the ordinary real plane.

Given sets A, B, C, we can define

$$A \times B \times C := \{(a, b, c) : a \in A, b \in B, \text{ and } c \in C\},\$$

the collection of ordered triples. Similarly, one could define orderer quadruples, etc. The n-fold Cartesian product of a set A with itself is

$$A^n := \underbrace{A \times \cdots \times A}_{n \text{ times}}.$$

For example, $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ is ordinary 3-space.