Math 112 lecture for Friday, Week 2

Equivalence classes

(Supplemental reading: Section 2.3 in Swanson.)

Definition. Let \sim be an equivalence relation on a set S. The equivalence class for $x \in S$ is

$$[x] := \{ y \in S : y \sim x \}.$$

The quotient of S by \sim is the set of equivalence classes for \sim :

$$S/\sim := \{ [x] : x \in S \} \,.$$

We also refer to S/\sim as "S modulo \sim " or "S mod \sim ".

Last time, we introduced an equivalence relation on \mathbb{Z} for each $n \in \mathbb{Z}$. Fix your favorite integer n. Then for $a, b \in \mathbb{Z}$ we will say $a \sim b$ if a and b differ by a multiple of n, i.e., if

$$a-b=kn$$

for some $k \in \mathbb{Z}$. We use the notation $\mathbb{Z}/n\mathbb{Z}$ to denote \mathbb{Z}/\sim , the set of equivalence classes of \mathbb{Z} modulo n.

Example. Consider the equivalence relation \mathbb{Z} we defined above for the case n = 2. There are two equivalence classes:

$$[0] = \{0, \pm 2, \pm 4, \dots\}$$
$$[1] = \{1, \pm 3, \pm 5, \dots\}.$$

The "name" of an equivalence class is not necessarily unique. In this example, we have [0] = [2] and [1] = [-17], for instance. Note that people use these equivalence classes all the time: it's just the notion of even and odd.

Example. What are the equivalence classes when n = 3? Looking above, we see that there are three of them:

$$[0] = \{\dots, -6, -3, 0, 3, 6, \dots\}$$

$$[1] = \{\dots, -5, -2, 1, 4, 7, \dots\}$$

$$[2] = \{\dots, -4, -1, 2, 5, 8, \dots\}.$$

It's interesting that, unlike the case n = 2, there aren't common words for the three equivalence classes of the integers modulo three.

Proposition. Let $n \in \mathbb{Z}$ and for $a, b \in \mathbb{Z}$, say $a \sim b$ if

$$a-b=kn$$

for some integer k. Then \sim is an equivalence relation.

Proof. We need to show that \sim is reflexive, symmetric, and transitive. Let $a, b, c \in \mathbb{Z}$. Reflexivity. We have $a \sim a$ since $a - a = 0 \cdot n$. (We are letting k = 0 in the definition of \sim .)

Symmetry. Suppose that $a \sim b$. This means that there exists a $k \in \mathbb{Z}$ such that

$$a-b=kn$$

But then

$$b - a = (-k)n.$$

Hence $b \sim a$.

Transitivity. Suppose that $a \sim b$ and $b \sim c$. Then there exist $k, \ell \in \mathbb{Z}$ such that

a-b=kn and $b-c=\ell n$.

Adding these two equations, we get

$$a - c = (a - b) + (b - c) = kn + \ell n = (k + \ell)n.$$

Therefore, $a \sim c$. To help make this last point as clear as possible, we can let $m := k + \ell$. Then $m \in \mathbb{Z}$, and

$$a-c=mn.$$

Template. Here is a template for a proof that a given relation is an equivalence relation:

Proposition. Define a relation \sim on a set A by blah, blah, blah. Then \sim is an equivalence relation.

Proof. Let $a, b, c \in A$.

Reflexivity. We have $a \sim a$ since blah, blah, blah. Therefore, \sim is reflexive.

Symmetry. Suppose that $a \sim b$. Then, blah, blah, blah. It follows that $b \sim a$. Therefore \sim is symmetric.

Transitivity. Suppose that $a \sim b$ and $b \sim c$. Then blah, blah, blah. It follows that $a \sim c$. Therefore, \sim is transitive.

Since \sim is reflexive, symmetric, and transitive, it follows that \sim is an equivalence relation.