
Math 112 Lecture for Wednesday, Week 1

(Supplemental reading: Sections 1.4 and 1.5 in Swanson.)

Our first goal is to learn how to write a perfect proof by induction. (This material
overlaps with that in Math 113, but it’s important enough to go over twice.)

Example (template).

Proposition 1. For all integers n ≥ 1,

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

We’ll discuss this theorem a bit before proving it by induction. For the case n = 3,
it says:

1 + 2 + 3 =
3 · 4
2

,

and it’s easy to see that both sides of this equation are equal to 6. When n = 4, we
have

1 + 2 + 3 + 4 = 10 =
4 · 5
2

.

There is a tricky way to prove this theorem without using induction. Consider the
following for the case n = 6:

1 + 2 + 3 + 4 + 5 + 6
6 + 5 + 4 + 3 + 2 + 1
7 + 7 + 7 + 7 + 7 + 7

+
= 6 · 7

Adding the sum twice gives 6 · 7 = 42. Divide by two to get the sum:

1 + 2 + 3 + 4 + 5 + 6 =
6 · 7
2

= 21.

In a picture:
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The 6×7 square contains our sum twice—once in yellow and once in blue. The proof
clearly generalizes:

1 + 2 + · · · + (n− 1) + n
n + (n− 1) + · · · + 2 + 1

(n+ 1) + (n+ 1) + · · · + (n+ 1) + (n+ 1)

+
= n · (n+ 1).

Divide by two to get the general sum formula:

1 + 2 + · · ·+ (n− 1) + n =
n(n+ 1)

2
.

We now give a proof of the proposition using induction. Please use it as a template
for your own induction proofs.

Proof. We will prove this by induction. For the base case, n = 1, the result holds
since in that case

1 + 2 + · · ·+ n = 1 =
1 · (1 + 1)

2
.

Suppose the result holds for some n ≥ 1. It follows that

1 + 2 + · · ·+ (n+ 1) = (1 + 2 + · · ·+ n) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) (by the induction hypothesis)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2))

2

=
(n+ 1)((n+ 1) + 1)

2
.

So the result holds for the case n+ 1, too. The proposition follows by induction.

Rules.

1. Always start a proof by induction by telling your reader that you are giving a proof
by induction.

2. Next, show that result holds for the smallest value of n in question—in this case,
n = 1.
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3. Note that we assume the result is true for some n ≥ 1. If we said, instead:
“assume the result holds for n ≥ 1”, this would mean we’re assuming the result
for all n ≥ 1. But that would be circular: we’d be assuming what we are trying to
prove. Instead, at the induction step, we are merely saying that if we did know
the result for a particular value of n, we could prove that it follows for the next
value of n.

4. End the proof with a □. This tells the reader the proof is over.

Summation notation. For integers m ≤ n, and a function f defined at the integers
m,m+ 1, . . . , n, we use the notation

n∑
k=m

f(k) := f(m) + f(m+ 1) + · · ·+ f(n).

(Note: the notation A := B means A is defined to be B.) A closer look:

n∑
k=mdummy variable lower bound: sum starts here

upper bound: sum stops here

Greek letter sigma for “sum”

Example. Suppose that f(k) = k2. Then

2∑
k=−1

f(k) = f(−1) + f(0) + f(1) + f(2)

= (−1)2 + 02 + 12 + 22

= 1 + 0 + 1 + 4

= 6.

For this same sum we could write
∑2

k=−1 k
2 or

∑2
t=−1 t

2, for example.

Note: If m > n, then by convention, we take
∑n

k=m f(k) := 0. This is called the
empty sum.
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More examples.

4∑
i=2

(2i+ i2) = (2 · 2 + 22) + (2 · 3 + 32) + (2 · 4 + 42) = 47

5∑
k=1

2 = 2 + 2 + 2 + 2 + 2 = 10.

In general,
n∑

k=m

(af(k) + bg(k)) = a

n∑
k=m

f(k) + b
n∑

k=m

g(k).

Product notation. There is a similar notation for products:

n∏
k=m

f(k) := f(m) · f(m+ 1) · · · f(n).

For example,
n∏

k=1

k = 1 · 2 · · ·n =: n!.

If m > n, we define the empty product by
∏n

k=m f(k) := 1. (So, for example, 0! = 1.)

Back to induction. We now give our induction proof of Proposition 1 using sum-
mation notation:

Proposition 1 (using summation notation). For n ≥ 1

n∑
i=1

i =
n(n+ 1)

2
.

Proof. We will prove this by induction. The base case holds since

1∑
i=1

i = 1 =
1 · (1 + 1)

2
.

Suppose the result holds for some n ≥ 1. Then

n+1∑
i=1

i =

(
n∑

i=1

i

)
+ (n+ 1)
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=
n(n+ 1)

2
+ (n+ 1) by the induction hypothesis

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2

=
(n+ 1)((n+ 1) + 1)

2
.

So the result then holds for n+1, too. The result holds for all n ≥ 1, by induction.

Another example.

Proposition 2. Show
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

for n ≥ 1.

Proof. We will prove this by induction. The base case holds since

1∑
k=1

k2 = 12 = 1 =
1 · (1 + 1)(2 · 1 + 1)

6
.

Suppose the result holds from some n ≥ 1:

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
. (1)
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Then

n+1∑
k=1

k2 = 12 + · · ·+ n2 + (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 (by equation (1))

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6

=
(n+ 1)(n(2n+ 1) + 6(n+ 1))

6

=
(n+ 1)(2n2 + 7n+ 6)

6

=
(n+ 1)(n+ 2)(2n+ 3)

6

=
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6
.

Thus, the result then holds for n+1, too. Our result follows for all n ≥ by induction.
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