The group problems from Wednesday and Friday of Week 11 may be useful.
Problem 1. Find $\lim _{x \rightarrow 3}\left(x^{2}+x+4\right)$ and provide an $\varepsilon-\delta$ proof. (Hint: at some point, you will need to factor a quadratic in order to find $|x-3|$.)

Problem 2. We have encountered two notions for limits: one for sequences (using $\varepsilon-N$) and one for functions (using $\varepsilon-\delta$). This problem explains the connection. Suppose that $\lim _{x \rightarrow a} f(x)=L$, and let $\left\{x_{n}\right\}$ be a sequence such that $\lim _{n \rightarrow \infty} x_{n}=a$ and such that no x_{n} equals a. Show that the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to L. In your proof be sure to point out where the fact that no x_{n} equals a is used. (The converse of this result also holds but you are not asked to prove that here.) Advice: on scratch paper, write the $\varepsilon-\delta$ definition for $\lim _{x \rightarrow a} f(x)=L$ and the $\varepsilon-N$ definitions for $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Problem 3. Suppose that f and g are functions that are differentiable at some point a. Use the definition of the derivative, the definition of $f+g$, and our limit theorems for functions to prove that $f+g$ is differentiable at a and that $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$.

Problem 4. Consider the function

$$
\begin{aligned}
f:(0, \infty) & \rightarrow \mathbb{R} \\
x & \mapsto \frac{1}{x^{2}} .
\end{aligned}
$$

Use the definition of the derivative and our limit theorems to prove that f is differentiable at every point $x \in(0, \infty)$ and to compute $f^{\prime}(x)$.

Problem 5. Compute the radius of convergence for each of the following series. (As always, show your work.)
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 5^{n}} z^{n}$
(b) $\sum_{n=0}^{\infty} \frac{n^{3}}{n!} z^{n}$
(c) $\sum_{n=0}^{\infty} \frac{(4 n)!}{(n!)^{4}} z^{n}$

Problem 6. Consider an arbitrary polynomial in n of degree $d \geq 0$:

$$
p(n)=c_{d} n^{d}+c_{d-1} n^{d-1}+\cdots+c_{1} n+c_{0}
$$

where the c_{i} are constants and $c_{d} \neq 0$. What is the radius of convergence of $f(z)=$ $\sum_{n=0}^{\infty} p(n) z^{n}$? (Feel free to use one of our ratio tests since once n is large, $p(n)$ will be nonzero.)

