PROBLEM 1. Find the limit of the following sequence, and provide an ε -N proof:

$$\left\{\frac{3n^4 + 6n^2 + 1}{n^4 + 2n^2 + 3}\right\}.$$

PROBLEM 2. Find the limit of the following sequence, and provide an ε -N proof:

$$\left\{\frac{(-1)^n}{n^2}\right\}.$$

PROBLEM 3. Suppose $\{a_n\}$ is a sequence of positive real numbers and that $\lim_{n\to\infty} a_n = a$.

(a) Use an ε -N argument to prove that $a \ge 0$. Hint: suppose that a < 0 and argue that this would imply $a_n < 0$ for some n. The picture below might help:

What should we take ε to be in order to force a_n to be be negative for large n (in contradiction to the fact that $a_n > 0$ is positive for all n)?

(b) Is it necessarily true that a > 0? (Give a proof or explicit counterexample.)

PROBLEM 4. Let $\{a_n\}$ be a sequence of complex numbers, and consider the sequence $\{|a_n|\}$ of real numbers.

- (a) Suppose $\lim_{n\to\infty} a_n = a$. Prove that $\lim_{n\to\infty} |a_n| = |a|$ using an ε -N argument. (The reverse-triangle inequality may be of use.)
- (b) Give an example for which $\lim_{n\to\infty} |a_n|$ exists but $\lim_{n\to\infty} a_n$ does not.

PROBLEM 5. Prove that $\lim_{n\to\infty} \frac{1}{n^2} \neq 3$ straight from the definition of the limit, i.e., using an ε -N argument. (You will need to find a specific $\varepsilon > 0$ for which there is no response N.)

PROBLEM 6. Find the limit of the following sequences, proving your results using our "newfrom-old" limit theorem (not ε -N proofs). Use enough steps so that we can clearly see how that theorem is being used.

(a)

(b)
$$\left\{\frac{4n^2+5}{8n^2-2n+3}\right\}$$
$$\left\{\frac{n}{n^2+3}\right\}.$$