Problem 1. Find the limit of the following sequence, and provide an $\varepsilon-N$ proof:

$$
\left\{\frac{3 n^{4}+6 n^{2}+1}{n^{4}+2 n^{2}+3}\right\} .
$$

Problem 2. Find the limit of the following sequence, and provide an $\varepsilon-N$ proof:

$$
\left\{\frac{(-1)^{n}}{n^{2}}\right\}
$$

Problem 3. Suppose $\left\{a_{n}\right\}$ is a sequence of positive real numbers and that $\lim _{n \rightarrow \infty} a_{n}=a$.
(a) Use an $\varepsilon-N$ argument to prove that $a \geq 0$. Hint: suppose that $a<0$ and argue that this would imply $a_{n}<0$ for some n. The picture below might help:

What should we take ε to be in order to force a_{n} to be be negative for large n (in contradiction to the fact that $a_{n}>0$ is positive for all n)?
(b) Is it necessarily true that $a>0$? (Give a proof or explicit counterexample.)

Problem 4. Let $\left\{a_{n}\right\}$ be a sequence of complex numbers, and consider the sequence $\left\{\left|a_{n}\right|\right\}$ of real numbers.
(a) Suppose $\lim _{n \rightarrow \infty} a_{n}=a$. Prove that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|a|$ using an $\varepsilon-N$ argument. (The reverse-triangle inequality may be of use.)
(b) Give an example for which $\lim _{n \rightarrow \infty}\left|a_{n}\right|$ exists but $\lim _{n \rightarrow \infty} a_{n}$ does not.

Problem 5. Prove that $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \neq 3$ straight from the definition of the limit, i.e., using an $\varepsilon-N$ argument. (You will need to find a specific $\varepsilon>0$ for which there is no response N.)

Problem 6. Find the limit of the following sequences, proving your results using our "new-from-old" limit theorem (not $\varepsilon-N$ proofs). Use enough steps so that we can clearly see how that theorem is being used.
(a)

$$
\left\{\frac{4 n^{2}+5}{8 n^{2}-2 n+3}\right\}
$$

(b)

$$
\left\{\frac{n}{n^{2}+3}\right\}
$$

