
Math 112 Homework, Friday Week 7

Note: For homework from now on (unless specified), we assume all of the basic arithmetic
for R and C and the obvious properties having to do with inequalities for R without having
to justify them using the field and order axioms.

Problem 1. Let z, w ∈ C. Say z = a + bi and w = c + di with a, b, c, d ∈ R. Prove
that zw = z w.

Problem 2. Compute the following and express your answers in the form a+ bi with a, b ∈
R:

(a) 4− 8i.
(b) |3− 4i|.
(c) (1− 2i)2.
(d) Im(2 + 5i+ i(3− 7i) + 17).
(e) (4 + 3i)/(3 + 2i).

Problem 3. Let F be an ordered field or the complex numbers. In class, we proved the
triangle inequality:

(1) |u+ v| ≤ |u|+ |v|

for all u, v ∈ F . It turns out that easy substitutions for u and v yield the useful reverse
triangle inequality :

|x− y| ≥ | |x| − |y| |
for all x, y ∈ F .
We prove the reverse triangle inequality in two steps, first proving that |x − y| ≥ |x| − |y|
and then proving that |x− y| ≥ |y| − |x| for all x, y ∈ F . The result then clearly follows. At
no point in the following should you revert to using the definition of | |, which is, after all,
defined differently for an ordered field and for C.

(a) Find substitutions for u and v that transform the ordinary triangle inequality, (1),
into the inequality |x − y| ≥ |x| − |y|. (The substitutions will be simple expressions
involving x and y. Hint: note that our objective is equivalent to |x| ≤ |x− y|+ |y|.)

(b) Use part (a) and the fact that | − s| = |s| for all s ∈ F to show |x− y| ≥ |y| − |x|.

Problem 4. Give the polar forms for the five solutions to z5 = 32.

Problem 5. Let z = 8 + 9i to polar form. Use a calculator to compute the approximate
value of arg(z) in degrees, and then use that to approximate the polar form for z.

Problem 6. Let D be a nonempty subset of R. Let f : D → R and g : D → R be functions.
Recall the notation

f(D) := {f(x) : x ∈ D} and g(D) := {g(x) : x ∈ D} .
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Define h : D → R by h(x) := f(x) + g(x). (This function h is usually denoted f + g, for
obvious reasons). Suppose that f(D) and g(D) are bounded above (so their suprema exist
by completeness of R).

(a) Show that h(D) is bounded above by sup f(D) + sup g(D). (Start: Let y ∈ h(D).
Therefore, y = h(x) for some x ∈ D.)

(b) Since h(D) is bounded above, it has a supremum by completeness of R. Show that
suph(D) ≤ sup f(D) + sup g(D).

(c) Find two specific functions f, g : [−1, 1] → R such that we have a strict inequality
suph([−1, 1]) < sup f([−1, 1]) + sup g([−1, 1]).


