Note: For homework from now on (unless specified), we assume all of the basic arithmetic for $\mathbb{R}$ and $\mathbb{C}$ and the obvious properties having to do with inequalities for $\mathbb{R}$ without having to justify them using the field and order axioms.

Problem 1. Let $z, w \in \mathbb{C}$. Say $z=a+b i$ and $w=c+d i$ with $a, b, c, d \in \mathbb{R}$. Prove that $\overline{z w}=\bar{z} \bar{w}$.

Problem 2. Compute the following and express your answers in the form $a+b i$ with $a, b \in$ $\mathbb{R}$ :
(a) $\overline{4-8 i}$.
(b) $|3-4 i|$.
(c) $(1-2 i)^{2}$.
(d) $\operatorname{Im}(2+5 i+i(3-7 i)+17)$.
(e) $(4+3 i) /(3+2 i)$.

Problem 3. Let $F$ be an ordered field or the complex numbers. In class, we proved the triangle inequality:

$$
\begin{equation*}
|u+v| \leq|u|+|v| \tag{1}
\end{equation*}
$$

for all $u, v \in F$. It turns out that easy substitutions for $u$ and $v$ yield the useful reverse triangle inequality:

$$
|x-y| \geq||x|-|y||
$$

for all $x, y \in F$.
We prove the reverse triangle inequality in two steps, first proving that $|x-y| \geq|x|-|y|$ and then proving that $|x-y| \geq|y|-|x|$ for all $x, y \in F$. The result then clearly follows. At no point in the following should you revert to using the definition of $|\mid$, which is, after all, defined differently for an ordered field and for $\mathbb{C}$.
(a) Find substitutions for $u$ and $v$ that transform the ordinary triangle inequality, (1), into the inequality $|x-y| \geq|x|-|y|$. (The substitutions will be simple expressions involving $x$ and $y$. Hint: note that our objective is equivalent to $|x| \leq|x-y|+|y|$.)
(b) Use part (a) and the fact that $|-s|=|s|$ for all $s \in F$ to show $|x-y| \geq|y|-|x|$.

Problem 4. Give the polar forms for the five solutions to $z^{5}=32$.
Problem 5. Let $z=8+9 i$ to polar form. Use a calculator to compute the approximate value of $\arg (z)$ in degrees, and then use that to approximate the polar form for $z$.

Problem 6. Let $D$ be a nonempty subset of $\mathbb{R}$. Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow R$ be functions. Recall the notation

$$
f(D):=\{f(x): x \in D\} \quad \text { and } \quad g(D):=\{g(x): x \in D\} .
$$

Define $h: D \rightarrow \mathbb{R}$ by $h(x):=f(x)+g(x)$. (This function $h$ is usually denoted $f+g$, for obvious reasons). Suppose that $f(D)$ and $g(D)$ are bounded above (so their suprema exist by completeness of $\mathbb{R})$.
(a) Show that $h(D)$ is bounded above by $\sup f(D)+\sup g(D)$. (Start: Let $y \in h(D)$. Therefore, $y=h(x)$ for some $x \in D$.)
(b) Since $h(D)$ is bounded above, it has a supremum by completeness of $\mathbb{R}$. Show that $\sup h(D) \leq \sup f(D)+\sup g(D)$.
(c) Find two specific functions $f, g:[-1,1] \rightarrow \mathbb{R}$ such that we have a strict inequality $\sup h([-1,1])<\sup f([-1,1])+\sup g([-1,1])$.

