Problem 1. Fill in the following table, writing DNE if the quantity does not exist:

	\sup	\max	\inf	\min
$(-4, \pi)$				
$[6,12)$				
$(-\infty, 3]$				
$\left\{1+(-1)^{n}: n \in \mathbb{N}\right\}$				
$\left\{\sin (1 / x): x \in \mathbb{R}_{>0}\right\}$				

No explanation is required.

Problem 2. Let S be a subset of an ordered field F, and $\operatorname{suppose} \sup (S)$ exists. Fix $c \in F$, and define the set

$$
c+S:=\{c+s: s \in S\} .
$$

Prove that $\sup (c+S)=c+\sup (S)$ by filling in the blanks in the template below. (Your write-up should include the full proof.)

Proof. We first prove that $c+\sup (S)$ is an upper bound for $c+S$. Let $x \in c+S$. The $x=c+s$ for some $s \in S$. Since $s \in S$, \qquad . From the additive translation axiom for ordered fields, \square . Hence, $c+\sup (S)$ is an upper bound for $c+S$.

Next, we prove that $c+\sup (S)$ is the least upper bound for $c+S$. Let B be an upper bound for $c+S$. Then $B-c$ is an upper bound for S. To see this, let $s \in S$. Then \qquad
Since $B-c$ is an upper bound for S and $\sup (S)$ is the least upper bound, It follows that $c+\sup (S) \leq B$, as desired.

Problem 3. (We can approximate the infimum of a set arbitrarily closely with an element in the set.) Prove the following, imitating the proof of Proposition 4 in the reading for Friday, Week 5:

Let S be a subset of an ordered field F, and suppose that $N:=\inf S$ exists. Given $\varepsilon \in F$ with $\varepsilon>0$, there exists $s \in S$ such that $s-N<\varepsilon$.

Helpful picture. In trying to prove this result, the following picture (for the case $F=\mathbb{R}$ and S an interval) may help:

Note that (i) $s-N<\varepsilon$ is equivalent to $s<N+\varepsilon$ and (ii) since $N=\inf (S)$ and $s \in S$ it follows that s is in the interval $[N, N+\varepsilon)$.

Problem 4. Prove that \mathbb{C} satisfies the distributivity axiom for a field. (Work directly from our definition of \mathbb{C} as \mathbb{R}^{2} with a certain addition and multiplication, i.e., use the (a, b) notation as opposed the $a+b i$ notation.)

Problem 5. Compute the following and express in the form $a+b i$ with $a, b \in \mathbb{R}$:
(a) $(2-7 i)(1+2 i)+(4+i)$
(b) $\frac{1}{2-i}$
(c) $\frac{1+3 i}{3+i}$
(d) $\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{3}$

