	\sup	max	inf	min
$(-4,\pi)$				
[6, 12)				
$(-\infty,3]$				
$\{1+(-1)^n:n\in\mathbb{N}\}$				
$\{\sin(1/x): x \in \mathbb{R}_{>0}\}$				

PROBLEM 1. Fill in the following table, writing DNE if the quantity does not exist:

No explanation is required.

PROBLEM 2. Let S be a subset of an ordered field F, and suppose $\sup(S)$ exists. Fix $c \in F$, and define the set

$$c + S := \{c + s : s \in S\}.$$

Prove that $\sup(c+S) = c + \sup(S)$ by filling in the blanks in the template below. (Your write-up should include the full proof.)

Proof. We first prove that $c+\sup(S)$ is an upper bound for c+S. Let $x \in c+S$. The x = c+s for some $s \in S$. Since $s \in S$, ______. From the additive translation axiom for ordered fields, ______. Hence, $c + \sup(S)$ is an upper bound for c + S.

Next, we prove that $c + \sup(S)$ is the least upper bound for c + S. Let B be an upper bound for c+S. Then B-c is an upper bound for S. To see this, let $s \in S$. Then

Since B - c is an upper bound for S and $\sup(S)$ is the *least upper bound*, _____. It follows that $c + \sup(S) \le B$, as desired. \Box

PROBLEM 3. (We can approximate the infimum of a set arbitrarily closely with an element in the set.) Prove the following, imitating the proof of Proposition 4 in the reading for Friday, Week 5:

Let S be a subset of an ordered field F, and suppose that $N := \inf S$ exists. Given $\varepsilon \in F$ with $\varepsilon > 0$, there exists $s \in S$ such that $s - N < \varepsilon$.

Helpful picture. In trying to prove this result, the following picture (for the case $F = \mathbb{R}$ and S an interval) may help:

Note that (i) $s - N < \varepsilon$ is equivalent to $s < N + \varepsilon$ and (ii) since $N = \inf(S)$ and $s \in S$ it follows that s is in the interval $[N, N + \varepsilon)$.

PROBLEM 4. Prove that \mathbb{C} satisfies the distributivity axiom for a field. (Work directly from our definition of \mathbb{C} as \mathbb{R}^2 with a certain addition and multiplication, i.e., use the (a, b) notation as opposed the a + bi notation.)

PROBLEM 5. Compute the following and express in the form a + bi with $a, b \in \mathbb{R}$:

(a)
$$(2-7i)(1+2i) + (4+i)$$

(b) $\frac{1}{2-i}$
(c) $\frac{1+3i}{3+i}$
(d) $\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3$