Problem 1. Recall that the identity function on a set A is the function $\operatorname{id}_{A}: A \rightarrow A$ defined by $\operatorname{id}_{A}(a)=a$ for all $a \in A$. In the reading, it was mentioned that a function $f: A \rightarrow B$ is a bijective if and only if there is a function $g: B \rightarrow A$ such that both $f \circ g=\operatorname{id}_{B}$ and $g \circ f=\operatorname{id}_{A}$. (In this case, g is the inverse of f.) The point of this problem is to see that both of these conditions are necessary.
(a) Suppose $f: A \rightarrow B$ and $g: B \rightarrow A$ are functions.
i. Show that if $g \circ f=\operatorname{id}_{A}$, then f is injective. (In this case, g is called a left inverse for f.
ii. Show that if $f \circ g=\operatorname{id}_{B}$, then f is surjective. (In this case, g is called a right inverse for f.)
(b) Let $A=\{1,2,3\}$ and $B=\{w, x, y, z\}$. Define two functions $f: A \rightarrow B$ and $g: B \rightarrow A$ such that $g \circ f=\operatorname{id}_{A}$ and f is not a bijection.

Problem 2. Let $f: A \rightarrow B$ be a function between sets A and B. Let X and Y be subsets of B. Prove that

$$
f^{-1}(X \cup Y)=f^{-1}(X) \cup f^{-1}(Y)
$$

[Notes: (i) follow the template for proving two sets are equal; (ii) recall the definition of the inverse image of a set: if $Z \subseteq B$, then $a \in f^{-1}(Z)$ means that $f(a) \in Z$.]

Problem 3.
(a) Let $a \in \mathbb{Z}$ have digits $a_{k} a_{k-1} \ldots a_{1} a_{0}$. In other words,

$$
a=a_{0}+a_{1} \cdot 10+a_{2} \cdot 10^{2}+\cdots+a_{k} \cdot 10^{k} .
$$

For example, $547=7+4 \cdot 10+5 \cdot 10^{2}$. Show that, in general,

$$
a=a_{0}+a_{1}+\cdots+a_{k} \bmod 9 .
$$

(Thus, for instance, $547=5+4+7=0+7=7 \bmod 9$.)
(b) Show how the above observation allows you to easily check that the integer 12345678 is divisible by 9 .

The observation in the previous problem is the basis of the common and useful way of checking arithmetic called "casting out 9 s ". To check that your arithmetic is correct in adding a collection of multi-digit integers, first add all the digits, casting out 9 s as you go to keep the sum small. The result is the sum of the digits modulo 9 . Next add the digits of your answer, again casting out 9 s . If your two results don't agree modulo 9 , then you made an arithmetic mistake somewhere. For instance, consider the following calculation:

$$
\begin{array}{r}
59284 \\
+\quad 27968 \\
\hline 86252
\end{array}
$$

Working modulo 9 ,

$$
\begin{gathered}
59284=5+9+2+8+4=(5+4)+9+2+8 \\
=0+0+2+(-1)=1 \\
1
\end{gathered}
$$

$$
27968=2+7+9+6+8=(2+7)+9+6+(-1)=0+0+6-1=5 .
$$

Therefore,

$$
59284+27968=1+5=6 \bmod 9 .
$$

On the other hand, again modulo 9 ,

$$
86252=8+6+2+5+2=-1+6+(2+5+2)=-1+6+9=-1+6=5
$$

So

$$
59284+27968=6 \neq 5=86252 \bmod 9,
$$

which shows the arithmetic is faulty.
The digits of 59284 and 27968 were processed separately above, but they could have been combined: $5+9+2+8+4+2+7+9+6+8=$ etc. $\bmod 9$, looking for pairs adding to 9 to discard.

Problem 4.
(a) Apply the method of casting out 9 s to show the following arithmetic is mistaken. (As you go, look for digits that sum to 9 casting these out since that don't effect the sum modulo 9.)

$$
\begin{array}{r}
183 \\
247 \\
346 \\
739 \\
+\quad 435 \\
\hline 1960
\end{array}
$$

What is the sum of the numbers modulo 9 (above the line), and what is the (incorrect) bottom-line sum modulo 9 ?
(b) Explain why the casting out 9s method of error-checking is not foolproof. Give a concrete example.

