Problem 1. Given a set A, the power set of A is the set $\mathcal{P}(A)$ of all subsets of A :

$$
\mathcal{P}(A)=\{B: B \subseteq A\} .
$$

Another notation for the power set is 2^{A}. If A has n elements, it turns out that $\mathcal{P}(A)$ has 2^{n} elements (to make a subset, go to each element of A and make one of two choices: the element is in the subset, or it is not).
(a) List the elements of $\mathcal{P}(A)$ in the case where $A=\{x, y, z\}$.
(b) For a general set A (not necessarily the set A in part (a)) is the subset relation \subseteq on $\mathcal{P}(A)$ reflexive? Is it symmetric? Is it transitive? For each of these properties, either give a proof that it holds or provide a (simple, concrete) counterexample.
(c) Is the subset relation \subseteq on $\mathcal{P}(A)$ an equivalence relation?

Problem 2. Let $X=\{x, y, z\}$, and consider the relation

$$
R=\{(x, y),(y, y),(y, z)\} \subset X \times X
$$

(a) List the elements of the smallest possible equivalence relation on X that contains R, explaining why the elements you add to R are required.
(b) How many equivalence classes does the resulting equivalence relation have?

The next three problems all refer to the same relation, which we now describe. Consider the set $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ of ordered pairs of integers with non-zero second component. Define an equivalence relation \sim on $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ by $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ if $a b^{\prime}=b a^{\prime}$. For instance $(2,6) \sim(1,3)$ since $2 \cdot 3=6=6 \cdot 1$. Problems 3,4 , and 5 , below, all refer to this equivalence relation.

Problem 3. Prove that \sim is an equivalence relation. (Follow the template, and make sure in your proof that you do not potentially divide by 0 .)

Problem 4. For each of the following equivalence classes, give a general description of all of the elements in the equivalence class and then give five concrete examples of elements in the equivalence class: $[(0,2)],[(3,3)]$, and $[(3,5)]$.

Problem 5. The rational numbers are the set $\mathbb{Q}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}\right.$ and $\left.b \neq 0\right\}$, i.e., of ordinary fractions.
(a) Describe a one-to-one correspondence (a bijection) between the rational numbers and the set of equivalence classes for \sim. (The equivalence classes are all infinite. Hence, each fraction is going to correspond to an infinite list of pairs of integers under this correspondence.)
(b) Find integers a and b such that the fractions $6 / 15$ and $2 / 5$ both correspond to the equivalence class $[(a, b)]$ under your correspondence. (No explantion necessary.)

Problem 6. Show that the function

$$
\begin{aligned}
f: \mathbb{R} & \mapsto \mathbb{R} \\
x & \mapsto 2 x+5
\end{aligned}
$$

is a bijection. (Do not do this by providing an inverse function. Instead, use our template: first prove it is injective, then prove it is surjective).

