Math 112 Group problems, Monday Week 13

In the following problems, we will be trying to understand the geometry of the complex exponential function

$$\mathbb{C} \to \mathbb{C} \\
 z \mapsto e^z.$$

Recall that if $z = x + iy \in \mathbb{C}$ for some $x, y \in \mathbb{R}$, we have

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos(y) + i\sin(y)).$$

The last expression gives the polar form for e^z : its modulus (length) is e^x and its argument (angle) is y.

PROBLEM 1. What is the image of e^z ? Is $z \mapsto e^z$ injective? surjective?

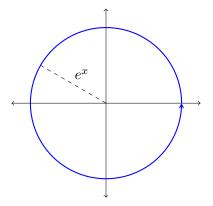
Solution. The image is $\mathbb{C} \setminus \{0\}$.

PROBLEM 2. Describe the image of each vertical line under e^z . It may help to note that a vertical line has the form $\{x + it : t \in \mathbb{R}\}$ for some fixed $x \in \mathbb{R}$. What happens to the images of these lines as $x \to -\infty$? What happens as $x \to \infty$?

Solution. We have

$$e^{x+it} = e^x(\cos(t) + i\sin(t)),$$

which traces out a circle of radius e^x centered at the origin as t varies.



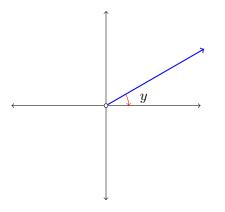
As $x \to -\infty$, the circle's radius approaches 0, and as $x \to \infty$, the circle's radius approached ∞ .

PROBLEM 3. Describe the image of each horizontal line under e^z .

Solution. We have

$$e^{t+iy} = e^t(\cos(y) + i\sin(y)),$$

which traces out a ray emanating from the origin with angle y:

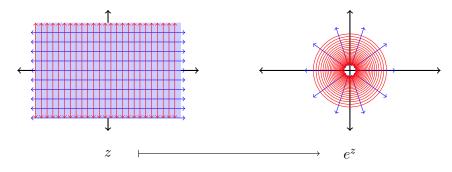


PROBLEM 4. (Complex logarithms)

- (a) Over the real numbers, we can define the natural logarithm to be the inverse of the exponential function. Why can't we do that with the complex exponential function?
- (b) Fix the following horizontal strip of width 2π in the complex plane: $H := \{x + iy \in \mathbb{C} : x \in \mathbb{R} \text{ and } y \in (-\pi, \pi]\}$. Draw two copies of \mathbb{C} . In the first one, draw H, and in the second, draw the image K of H under e^z . By thinking about the images of horizontal lines and vertical line segments in H, picture how H is mapped to K by e^z .
- (c) Why does $e^z \colon H \to K$ have an inverse?
- (d) We call this inverse a *branch* of the logarithm and denote it by ln (keeping in mind that this definition depended on fixing a region in the plane on which e^z is injective). Suppose $w \in K$ has polar form $w = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$. In terms of r and θ , find a formula for $z \in H$ such that $e^z = w$, i.e., find a formula for $\ln(w)$.
- (e) For this branch of the logarithm, compute the following: (i) $\ln(1+i)$, (ii) $\ln(-1)$, and (iii) $\ln(x)$ for $x \in \mathbb{R}$.

Solution.

- (a) The function $z \mapsto e^z$ is not injective.
- (b) The image is $K = \mathbb{C} \setminus \{0\}$.



(c) The function e^z is injective when restricted to H and then surjective by definition of K.

(d) We have

$$\begin{split} \ln\colon \mathbb{C}\setminus\{0\} &\to H\\ re^{i\theta} &\mapsto \ln(r) + i\theta \end{split}$$

where $\ln(r)$ is the ordinary natural logarithm for real numbers since $e^{\ln(r)+i\theta} = e^{\ln(r)}e^{i\theta} = re^{i\theta}$. Note that $\theta \in (-\pi, \pi]$.

(e) We have

$$\ln(1+i) = \ln\left(\sqrt{2}e^{i\frac{\pi}{4}}\right) = \ln(\sqrt{2}) + i\frac{\pi}{4}$$
$$\ln(-1) = \ln\left(1 \cdot e^{i\pi}\right) = \ln(1) + i\pi = i\pi$$
$$\ln(x) = \begin{cases} \ln(x) & \text{if } x > 0\\ \ln(|x|) + i\pi & \text{if } x < 0. \end{cases}$$

where the logs on the right-hand side are the ordinary natural logs for real numbers.