Math 112 Group problems, Friday Week 13

In the lecture notes, we argued that

(1)
$$1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots = \left(1 - \frac{z^2}{\pi^2}\right) \left(1 - \frac{z^2}{4\pi^2}\right) \left(1 - \frac{z^2}{9\pi^2}\right) \dots$$

and, by equating the coefficients of z^2 on each side, showed that

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$

where $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ is the Riemann zeta function. The point of the problems below is to

show that
$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$
.

PROBLEM 1. Imagine expanding the product on the right-hand side of (1). Each term in the expansion corresponds to making a choice in each factor between either 1 or $-\frac{z^2}{m^2\pi^2}$. Give a couple of examples of terms in the expansion that contribute to the coefficient of z^4 . What does the general term contributing to the coefficient of z^4 look like?

Solution. A typical term contributing to z^4 has the form

$$\left(-\frac{z^2}{i^2\pi^2}\right)\left(-\frac{z^2}{j^2\pi^2}\right) = \frac{z^4}{i^2j^2\pi^4}$$

where $i \neq j$.

Problem 2.

(1)
$$1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots = \left(1 - \frac{z^2}{\pi^2}\right) \left(1 - \frac{z^2}{4\pi^2}\right) \left(1 - \frac{z^2}{9\pi^2}\right) \dots$$

Evaluate the coefficient of z^4 in the expansion of the right-hand side of (1) by looking at the left-hand side. (This should be easy.)

Solution. We get

$$\frac{1}{5!} = \frac{1}{120}.$$

Problem 3.

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$

Consider the following table

	$\frac{1}{1^2}$	$\frac{1}{2^2}$	$\frac{1}{3^2}$	$\frac{1}{4^2}$	
$\frac{1}{1^2}$		$\left(\frac{1}{1^2}\right)\left(\frac{1}{2^2}\right)$	$\left(\frac{1}{1^2}\right)\left(\frac{3}{1^2}\right)$	$\left(\frac{1}{1^2}\right)\left(\frac{1}{4^2}\right)$	
$\frac{1}{2^2}$	$\left(\frac{1}{2^2}\right)\left(\frac{1}{1^2}\right)$	$\left(\frac{1}{2^2}\right)\left(\frac{1}{2^2}\right)$	$\left(\frac{1}{2^2}\right)\left(\frac{1}{3^2}\right)$	$\left(\frac{1}{2^2}\right)\left(\frac{1}{4^2}\right)$	• • •
$\frac{1}{3^2}$	$\left(\frac{1}{3^2}\right)\left(\frac{1}{1^2}\right)$	$\left(\frac{1}{3^2}\right)\left(\frac{1}{2^2}\right)$	$\left(\frac{1}{3^2}\right)\left(\frac{1}{3^2}\right)$	$\left(\frac{1}{3^2}\right)\left(\frac{1}{4^2}\right)$	
$\frac{1}{4^2}$	$\left(\frac{1}{4^2}\right)\left(\frac{1}{1^2}\right)$	$\left(\frac{1}{4^2}\right)\left(\frac{1}{2^2}\right)$	$\left(\frac{1}{4^2}\right)\left(\frac{1}{3^2}\right)$	$\left(\frac{1}{4^2}\right)\left(\frac{1}{4^2}\right)$	• • •
	:				

- (a) Why is the sum of all of the entries in the table is $\zeta(2)^2$.
- (b) What is the sum of the terms on the diagonal in terms of the zeta function?
- (c) What is the sum of the terms off of the diagonal? (Hint: see Problems 1 and 2 in order to find a numerical value.)

Solution.

(a) We have

$$\zeta(2)^2 = \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots\right) \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots\right)$$

The terms in the expansion of the product have the form

$$\frac{1}{i^2} \cdot \frac{1}{j^2},$$

with $i, j \in \mathbb{Z}_{\geq 1}$. These are exactly the entries in the table.

(b) The sum of the diagonal terms is

$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4}.$$

(c) By Problems 1 and 2

$$\sum_{\substack{i,j \in \mathbb{Z}_{\geq 1} \\ i \neq j}} \frac{1}{i^2 j^2 \pi^2} = \frac{1}{120}.$$

The sum of the off-diagonal terms contains that sum twice. Hence, the sum of the off-diagonal terms is

$$2\sum_{\substack{i,j\in\mathbb{Z}_{\geq 1}\\i\neq j}}\frac{1}{i^2j^2}=2\cdot\frac{\pi^4}{120}.=\frac{\pi^4}{60}$$

PROBLEM 4. Use Problem 3 to show that

$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

Solution. By Problem 3 the sum of all entries in the table is $\zeta(2)^2$. On the other hand, we can break the sum into two parts: the off-diagonal entries, whose sum is $\pi^2/120$, and the diagonal entries, whose sum is $\zeta(4)$. Therefore,

$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \zeta(2)^2 - \frac{\pi^4}{120} = \left(\frac{\pi^2}{6}\right)^2 - \frac{\pi^4}{60} = \left(\frac{1}{36} - \frac{1}{60}\right)\pi^4 = \left(\frac{10 - 6}{360}\right)\pi^4 = \frac{\pi^4}{90}.$$