In the lecture notes, we argued that

$$
\begin{equation*}
1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots=\left(1-\frac{z^{2}}{\pi^{2}}\right)\left(1-\frac{z^{2}}{4 \pi^{2}}\right)\left(1-\frac{z^{2}}{9 \pi^{2}}\right) \cdots \tag{1}
\end{equation*}
$$

and, by equating the coefficients of z^{2} on each side, showed that

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{6}
$$

where $\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ is the Riemann zeta function. The point of the problems below is to show that $\zeta(4)=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.

Problem 1. Imagine expanding the product on the right-hand side of (1). Each term in the expansion corresponds to making a choice in each factor between either 1 or $-\frac{z^{2}}{m^{2} \pi^{2}}$. Give a couple of examples of terms in the expansion that contribute to the coefficient of z^{4}. What does the general term contributing to the coefficient of z^{4} look like?

Solution. A typical term contributing to z^{4} has the form

$$
\left(-\frac{z^{2}}{i^{2} \pi^{2}}\right)\left(-\frac{z^{2}}{j^{2} \pi^{2}}\right)=\frac{z^{4}}{i^{2} j^{2} \pi^{4}}
$$

where $i \neq j$.
Problem 2.

$$
\begin{equation*}
1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots=\left(1-\frac{z^{2}}{\pi^{2}}\right)\left(1-\frac{z^{2}}{4 \pi^{2}}\right)\left(1-\frac{z^{2}}{9 \pi^{2}}\right) \cdots \tag{1}
\end{equation*}
$$

Evaluate the coefficient of z^{4} in the expansion of the right-hand side of (1) by looking at the left-hand side. (This should be easy.)

Solution. We get

$$
\frac{1}{5!}=\frac{1}{120}
$$

Problem 3.

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots
$$

Consider the following table

	$\frac{1}{1^{2}}$	$\frac{1}{2^{2}}$	$\frac{1}{3^{2}}$	$\frac{1}{4^{2}}$	\cdots
$\frac{1}{1^{2}}$	$\left(\frac{1}{1^{2}}\right)\left(\frac{1}{1^{2}}\right)$	$\left(\frac{1}{1^{2}}\right)\left(\frac{1}{2^{2}}\right)$	$\left(\frac{1}{1^{2}}\right)\left(\frac{3}{1^{2}}\right)$	$\left(\frac{1}{1^{2}}\right)\left(\frac{1}{4^{2}}\right)$	\cdots
$\frac{1}{2^{2}}$	$\left(\frac{1}{2^{2}}\right)\left(\frac{1}{1^{2}}\right)$	$\left(\frac{1}{2^{2}}\right)\left(\frac{1}{2^{2}}\right)$	$\left(\frac{1}{2^{2}}\right)\left(\frac{1}{3^{2}}\right)$	$\left(\frac{1}{2^{2}}\right)\left(\frac{1}{4^{2}}\right)$	\cdots
$\frac{1}{3^{2}}$	$\left(\frac{1}{3^{2}}\right)\left(\frac{1}{1^{2}}\right)$	$\left(\frac{1}{3^{2}}\right)\left(\frac{1}{2^{2}}\right)$	$\left(\frac{1}{3^{2}}\right)\left(\frac{1}{3^{2}}\right)$	$\left(\frac{1}{3^{2}}\right)\left(\frac{1}{4^{2}}\right)$	\cdots
$\frac{1}{4^{2}}$	$\left(\frac{1}{4^{2}}\right)\left(\frac{1}{1^{2}}\right)$	$\left(\frac{1}{4^{2}}\right)\left(\frac{1}{2^{2}}\right)$	$\left(\frac{1}{4^{2}}\right)\left(\frac{1}{3^{2}}\right)$	$\left(\frac{1}{4^{2}}\right)\left(\frac{1}{4^{2}}\right)$	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

(a) Why is the sum of all of the entries in the table is $\zeta(2)^{2}$.
(b) What is the sum of the terms on the diagonal in terms of the zeta function?
(c) What is the sum of the terms off of the diagonal? (Hint: see Problems 1 and 2 in order to find a numerical value.)

Solution.

(a) We have

$$
\zeta(2)^{2}=\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots\right)\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots\right)
$$

The terms in the expansion of the product have the form

$$
\frac{1}{i^{2}} \cdot \frac{1}{j^{2}},
$$

with $i, j \in \mathbb{Z}_{\geq 1}$. These are exactly the entries in the table.
(b) The sum of the diagonal terms is

$$
\zeta(4)=\sum_{n=1}^{\infty} \frac{1}{n^{4}} .
$$

(c) By Problems 1 and 2

$$
\sum_{\substack{i, j \in \mathbb{Z} \geq 1 \\ i \neq j}} \frac{1}{i^{2} j^{2} \pi^{2}}=\frac{1}{120} .
$$

The sum of the off-diagonal terms contains that sum twice. Hence, the sum of the off-diagonal terms is

$$
2 \sum_{\substack{i, j \in \mathbb{Z} \geq 1 \\ i \neq j}} \frac{1}{i^{2} j^{2}}=2 \cdot \frac{\pi^{4}}{120} \cdot=\frac{\pi^{4}}{60}
$$

Problem 4. Use Problem 3 to show that

$$
\zeta(4)=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90} .
$$

Solution. By Problem 3 the sum of all entries in the table is $\zeta(2)^{2}$. On the other hand, we can break the sum into two parts: the off-diagonal entries, whose sum is $\pi^{2} / 120$, and the diagonal entries, whose sum is $\zeta(4)$. Therefore,

$$
\zeta(4)=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\zeta(2)^{2}-\frac{\pi^{4}}{120}=\left(\frac{\pi^{2}}{6}\right)^{2}-\frac{\pi^{4}}{60}=\left(\frac{1}{36}-\frac{1}{60}\right) \pi^{4}=\left(\frac{10-6}{360}\right) \pi^{4}=\frac{\pi^{4}}{90} .
$$

