Problem 1. Consider the geometric series

$$
f(z)=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z} .
$$

(a) Compute $z f^{\prime}(z)$ in two ways and use the result to evaluate $\sum_{n=0}^{\infty} n\left(\frac{2}{3}\right)^{n}$.
(b) Let $g(z)=z f^{\prime}(z)$. Thinking of $g(z)$ as both a power series and as a rational function, compute $z g^{\prime}(z)$ in two ways. Use the result to evaluate $\sum_{n=0}^{\infty} n^{2}\left(\frac{2}{3}\right)^{n}$.

Problem 2. Define complex power series by

$$
\begin{aligned}
& E(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\cdots \\
& C(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots \\
& S(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots .
\end{aligned}
$$

Each has radius of convergence $R=\infty$ (which is easy to check with the ratio test.). Prove the following:

$$
E^{\prime}(z)=E(z), \quad C^{\prime}(z)=-S(z), \quad \text { and } \quad S^{\prime}(z)=C(z)
$$

Problem 3. Using the definitions from the previous problem, prove that

$$
E(i z)=C(z)+i S(z) .
$$

Since the series involved are absolutely convergent on \mathbb{C}, as far as algebra goes, you can treat them like polynomials, freely rearranging their terms.

Problem 4. If there is extra time, try proving that $E(w+z)=E(w) E(z)$. You might first check that the constant terms are the same, then that the order 1 terms are the same, then the order 2 terms, etc. How far can you get? Or you could try proving it all at once. The binomial theorem may be of help:

$$
(w+z)^{n}=\sum_{k=0}^{n}\binom{n}{k} w^{n-k} z^{k}=\sum_{k=0}^{n} \frac{n!}{(n-k)!k!} w^{n-k} z^{k} .
$$

The binomial coefficients

$$
\binom{n}{0}\binom{n}{1}\binom{n}{2} \quad \cdots\binom{n}{n}
$$

form the n-th row of Pascal's triangle. Also, if $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ are power series with radius of convergence R, then for $|z|<R$,

$$
f(z) g(z)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} a_{n-k} b_{k}\right) z^{n}
$$

which results from just multiplying out $f(z) g(z)$ as if f and g were polynomials.

