Problem 1. Consider the geometric series

$$
f(z)=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}
$$

(a) Compute $z f^{\prime}(z)$ in two ways and use the result to evaluate $\sum_{n=0}^{\infty} n\left(\frac{2}{3}\right)^{n}$.
(b) Let $g(z)=z f^{\prime}(z)$. Thinking of $g(z)$ as both a power series and as a rational function, compute $z g^{\prime}(z)$ in two ways. Use the result to evaluate $\sum_{n=0}^{\infty} n^{2}\left(\frac{2}{3}\right)^{n}$.

Solution.
(a) Taking derivatives, we find

$$
f^{\prime}(z)=\sum_{n=0}^{\infty} n z^{n-1}=\left(\frac{1}{1-z}\right)^{\prime}=\frac{1}{(1-z)^{2}}
$$

Therefore,

$$
z f^{\prime}(z)=\sum_{n=0}^{\infty} n z^{n}=\frac{z}{(1-z)^{2}}
$$

and

$$
\sum_{n=0}^{\infty} n^{2}\left(\frac{2}{3}\right)^{n}=\left(\frac{2}{3}\right) f^{\prime}\left(\frac{2}{3}\right)=\frac{\left(\frac{2}{3}\right)}{\left(1-\frac{2}{3}\right)^{2}}=9 \cdot \frac{2}{3}=6
$$

(b) Using our previous results, we have

$$
g^{\prime}(z)=\left(\sum_{n=0}^{\infty} n z^{n}\right)^{\prime}=\sum_{n=0}^{\infty} n^{2} z^{n-1}
$$

and

$$
\begin{aligned}
g^{\prime}(z) & =\left(\frac{z}{(1-z)^{2}}\right)^{\prime} \\
& =\frac{(z)^{\prime}(1-z)^{2}-z\left((1-z)^{2}\right)^{\prime}}{(1-z)^{4}} \quad \quad \text { (quotient rule) } \\
& =\frac{(1-z)^{2}+2 z(1-z)}{(1-z)^{4}} \\
& =\frac{(1-z)+2 z}{(1-z)^{3}} \\
& =\frac{1+z}{(1-z)^{3}}
\end{aligned}
$$

Therefore,

$$
z g^{\prime}(z)=\sum_{n=0}^{\infty} n^{2} z^{n}=\frac{z(1+z)}{(1-z)^{3}},
$$

and, evaluating at $d=2 / 3$,

$$
\sum_{n=0}^{\infty} n^{2}\left(\frac{2}{3}\right)^{n}=\frac{\left(\frac{2}{3}\right)\left(1+\frac{2}{3}\right)}{\left(1-\frac{2}{3}\right)^{3}}=3^{3} \cdot \frac{2}{3} \cdot \frac{5}{3}=30
$$

Problem 2. Define complex power series by

$$
\begin{aligned}
& E(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\cdots \\
& C(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots \\
& S(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots .
\end{aligned}
$$

Each has radius of convergence $R=\infty$ (which is easy to check with the ratio test.). Prove the following:

$$
E^{\prime}(z)=E(z), \quad C^{\prime}(z)=-S(z), \quad \text { and } \quad S^{\prime}(z)=C(z)
$$

Solution. We have

$$
\begin{aligned}
E^{\prime}(z) & =\left(\sum_{n=0}^{\infty} \frac{z^{n}}{n!}\right)^{\prime}=\sum_{n=0}^{\infty} \frac{n z^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{n z^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=E(z) \\
C^{\prime}(z) & =\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}\right)^{\prime}=\sum_{n=0}^{\infty}(-1)^{n} \frac{2 n z^{2 n-1}}{(2 n)!}=\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n z^{2 n-1}}{(2 n)!} \\
& =\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2 n-1}}{(2 n-1)!}=-\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2(n+1)-1}}{(2(n-1)-1)!}=-\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \\
& =-S(z) \\
S^{\prime}(z) & =\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}\right)^{\prime}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n+1) z^{2 n}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}=C(z) .
\end{aligned}
$$

Problem 3. Using the definitions from the previous problem, prove that

$$
E(i z)=C(z)+i S(z)
$$

Since the series involved are absolutely convergent on \mathbb{C}, as far as algebra goes, you can treat them like polynomials, freely rearranging their terms.

Proof.

$$
\begin{aligned}
E(i z) & =\sum_{n=0}^{\infty} \frac{(i z)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(i z)^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{(i z)^{2 n+1}}{(2 n+1) 1!} \\
& =\sum_{n=0}^{\infty}(i)^{2 n} \frac{z^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty}(i)^{2 n+1} \frac{z^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} i(i)^{2 n} \frac{z^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}+i \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \\
& =C(z)+i S(z) .
\end{aligned}
$$

Problem 4. If there is extra time, try proving that $E(w+z)=E(w) E(z)$. You might first check that the constant terms are the same, then that the order 1 terms are the same, then the order 2 terms, etc. How far can you get? Or you could try proving it all at once. The binomial theorem may be of help:

$$
(w+z)^{n}=\sum_{k=0}^{n}\binom{n}{k} w^{n-k} z^{k}=\sum_{k=0}^{n} \frac{n!}{(n-k)!k!} w^{n-k} z^{k} .
$$

The binomial coefficients

$$
\binom{n}{0}\binom{n}{1}\binom{n}{2} \quad \cdots\binom{n}{n}
$$

form the n-th row of Pascal's triangle. Also, if $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ are power series with radius of convergence R, then for $|z|<R$,

$$
f(z) g(z)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} a_{n-k} b_{k}\right) z^{n}
$$

which results from just multiplying out $f(z) g(z)$ as if f and g were polynomials.

Proof. Calculate:

$$
\begin{aligned}
E(w+z) & =\sum_{n=0}^{\infty} \frac{(w+z)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{\sum_{k=0}^{n}\binom{n}{k} w^{n-k} z^{k}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} \frac{w^{n-k} z^{k}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} \frac{w^{n-k} z^{k}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{(n-k)!k!} w^{n-k} z^{k} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{w^{n-k}}{(n-k)!} \frac{z^{k}}{k!} \\
& =\left(\sum_{n=0}^{\infty} \frac{w^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{z^{n}}{n!}\right) \\
& =E(w) E(z) .
\end{aligned}
$$

