Math 112 Group problems, Wednesday Week 12

PRrROBLEM 1. Consider the geometric series

fle)=3 =1
n=0
2

(a) Compute zf’(z) in two ways and use the result to evaluate Y 2 n (g)n

(b) Let g(2) = zf’(z). Thinking of g(z) as both a power series and as a rational function,

compute zg'(z) in two ways. Use the result to evaluate Y oo n? (%)n

Solution.

(a) Taking derivatives, we find
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(b) Using our previous results, we have
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Therefore,
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and, evaluating at d = 2/3,
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PROBLEM 2. Define complex power series by
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Each has radius of convergence R = oo (which is easy to check with the ratio test.). Prove

the following:
E'(z) = E(z), C'(2)=-S(2), and S'(z)=C(z).
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PRrROBLEM 3. Using the definitions from the previous problem, prove that
E(iz) = C(z) +1iS(2).
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Since the series involved are absolutely convergent on C, as far as algebra goes, you can
treat them like polynomials, freely rearranging their terms.

Proof.
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=C(z) +1i5(2).
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PROBLEM 4. If there is extra time, try proving that E(w+ z) = E(w)E(z). You might first
check that the constant terms are the same, then that the order 1 terms are the same, then
the order 2 terms, etc. How far can you get? Or you could try proving it all at once. The
binomial theorem may be of help:
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form the n-th row of Pascal’s triangle. Also, if f(z) = Y 7 janz" and g(z) = > o7 by2"™
are power series with radius of convergence R, then for |z| < R,
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which results from just multiplying out f(z)g(z) as if f and g were polynomials.
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Proof. Calculate:
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