Math 112 Group problems, Monday Week 12
Problem 1. Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2}} z^{n}$.
Solution. Using the power series ratio test, we find

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{(2 n)!}{(n!)^{2}}\right) /\left(\frac{(2(n+1))!}{((n+1)!)^{2}}\right) & =\lim _{n \rightarrow \infty}\left(\frac{(n+1)!}{n!}\right)^{2} \cdot \frac{(2 n)!}{(2 n+2)!} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+2)(2 n+1)} \\
& =\frac{1}{4}
\end{aligned}
$$

Therefore, $R=\frac{1}{4}$.
Problem 2. Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2}} z^{2 n}$.
Solution. Let $w:=z^{2}$, and consider the power series $\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2}} w^{n}$. From Problem 1, we know that this latter series converges for $|w|<\frac{1}{4}$ and diverges for $|w|>\frac{1}{4}$. Since $|w|=|z|^{2}$, this means the radius of convergence for the original series is $R=\sqrt{\frac{1}{4}}=\frac{1}{2}$.
Problem 3. Compute the radius of convergence of $\sum_{n=0}^{\infty} n!z^{n}$ and of $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$.
Solution. Using the power series ratio test, we find

$$
\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{(n+1)!}{n!}=\infty
$$

Thus, the radius of convergence of the former series is 0 and of the latter is ∞.
Problem 4. Describe the region in the complex plane where the series $\sum_{n=1}^{\infty} \frac{(5 z-2)^{n}}{n^{2} 4^{n}}$ converges. (Don't forget to check the boundary of the region.)

Solution. By the power series ratio test we find

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2} 4^{n}} / \frac{1}{(n+1)^{2} 4^{n+1}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2} 4^{n+1}}{n^{2} 4^{n}}=\lim _{n \rightarrow \infty} 4\left(\frac{n+1}{n}\right)^{2}=4
$$

So this series converges where $|5 z-2|<4$. We have

$$
|5 z-2|<4 \Leftrightarrow\left|z-\frac{2}{5}\right|<\frac{4}{5} .
$$

Thus, the series converges absolutely in the open ball of radius $\frac{4}{5}$ centered at $\frac{2}{5} \in \mathbb{C}$, i.e., at the point $\left(\frac{2}{5}, 0\right)$.
On the boundary of the disc, where $|5 z-2|=4$, the series converges absolutely:

$$
\sum_{n=1}^{\infty}\left|\frac{(5 z-2)^{n}}{n^{2} 4^{n}}\right|=\sum_{n=1}^{\infty} \frac{4^{n}}{n^{2} 4^{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}},
$$

which converges by the p-test.
Problem 5. What is the radius of convergence of the series $f(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n}$. What happens on the boundary of its disc of convergence?
Solution. Apply the power series ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{n}\right| /\left|\frac{(-1)^{n+1}}{n+1}\right|=1
$$

Thus, the radius of convergence if $R=1$. What about on the boundary of the disc of radius 1 centered at the origin? We have that $f(1)$ is the alternating harmonic series, and hence converges. On the other hand, $f(-1)$ is the harmonic series, which diverges.
One may show that the series converges at every point on the boundary except for $z=-1$. (For example, use Abel's test as here with $a_{n}=\frac{1}{n}$ and with $-z$ in place of z.)

