For convenience:

 $\lim_{x\to a} f(x) = L$ if for all $\varepsilon > 0$ there exists $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.$$

PROBLEM 1. Find $\lim_{x\to 9} x^2$, and provide an ε - δ proof.

Solution: Claim: $\lim_{x\to 9} x^2 = 81$.

Proof. Given $\varepsilon > 0$, let $\delta = \min\{1, \varepsilon/19\}$ and suppose that $0 < |x-9| < \delta$. Then, since $\delta \le 1$, it follows that 8 < x < 10, and hence 17 < x + 9 < 19. Combining this with the fact that $\delta \le \varepsilon/19$, we have

$$|x^2 - 81| = |x + 9||x - 9| < 19|x - 9| < 19\delta \le 19\frac{\varepsilon}{19} = \varepsilon.$$

PROBLEM 2. Find $\lim_{x\to 3} \frac{1}{2+x}$, and provide an ε - δ proof.

Solution: Claim: $\lim_{x\to 3} \frac{1}{2+x} = \frac{1}{5}$.

Proof. Given $\varepsilon > 0$, let $\delta = \min\{1, 20\varepsilon\}$ and suppose that $0 < |x - 3| < \delta$. Since $\delta \le 1$, we have 2 < x < 4, and hence 20 < 5(2 + x) < 30. Combining this with the fact that $\delta \le 20\varepsilon$, we have

$$\left| \frac{1}{2+x} - \frac{1}{5} \right| = \left| \frac{5 - (2+x)}{5(2+x)} \right| = \left| \frac{3-x}{5(2+x)} \right| = \frac{|x-3|}{|5(2+x)|} < \frac{1}{20}|x-3| < \frac{1}{20}\delta \le \varepsilon.$$

PROBLEM 3. Find $\lim_{x\to 1} (x^2 + 3x + 2)$, and provide an ε - δ proof.

Solution: Claim: $\lim_{x\to 1} (x^2 + 3x + 2) = 6$.

Proof. Given $\varepsilon > 0$, let $\delta = \min\{1, \varepsilon/6\}$ and suppose that $0 < |x-1| < \delta$. Then since $\delta \le 1$, we have 0 < x < 2, and hence, 4 < x + 4 < 6. Combining this with the fact that $\delta \le \varepsilon/6$, we have

$$|x^{2} + 3x + 2 - 6| = |x^{2} + 3x - 4|$$

$$= |(x + 4)(x - 1)|$$

$$= |x + 4||x - 1|$$

$$< 6|x - 1|$$

$$< 6\delta \le 6 \cdot \frac{\varepsilon}{6} = \varepsilon.$$

PROBLEM 4. Define

$$f\colon \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1 & \text{if } x \text{ is rational} \\ -1 & \text{if } x \text{ is irrational.} \end{cases}$$

Does $\lim_{x\to 0} f(x)$ exist? If so, then provide an ε - δ proof. If not, then provide an ε that can't be beat by any δ .

SOLUTION: For sake of contradiction, suppose that $\lim_{x\to 0} f(x) = L$ for some $L \in \mathbb{R}$, and let $\varepsilon = 1$. Then we can find $\delta > 0$ such that $0 < |x| < \delta$ implies $|f(x) - L| < \varepsilon = 1$. There exist both a rational number $p \neq 0$ and an irrational number $q \neq 0$ within a distance of δ from 0. (For instance, we could let $p = 1/2^n$ and $q = \sqrt{2}/2^n$ for a suitably large n.) Then

$$2 = |f(p) - f(q)| = |(f(p) - L) - (f(q) - L)| \le |f(p) - L| + |f(q) - L| < 1 + 1 = 2,$$
 a contradiction.