Math 112 Group problems, Monday Week 11

PROBLEM 1. Apply the ratio test to each of the following series, and state what conclusion may be drawn:

(a)
$$\sum_{n=1}^{\infty} \frac{n!}{5^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{n^2}{(2n)!}$ (c) $\sum_{n=1}^{\infty} \frac{1}{2n^2}$ (d) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

For part (d), you may use the fact that $\lim_{n\to\infty} (1+1/n)^n = e$.

PROBLEM 2. Apply the integral test to each of the following series, and state what conclusion may be drawn:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n^{4/3}}$ (c) $\sum_{n=1}^{\infty} \frac{n^2}{e^{n^3}}$

PROBLEM 3. As a consequence of our limit theorems, we know that if $\sum_n a_n$ and $\sum_n b_n$ converge, then so do $\sum_n (a_n + b_n)$ and $\sum_n ca_n$ for all constants c. It turns out that it is not necessarily true that $\sum_n a_n b_n$ converges. As a special case (where $a_n = b_n$), find a series $\sum_n a_n$ such that $\sum_n a_n = 0$, and yet $\sum_n a_n^2$ diverges to ∞ .