Problem 1. Apply the ratio test to each of the following series, and state what conclusion may be drawn:
(a) $\sum_{n=1}^{\infty} \frac{n!}{5^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{n^{2}}{(2 n)!}$
(c) $\sum_{n=1}^{\infty} \frac{1}{2 n^{2}}$
(d) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$

For part (d), you may use the fact that $\lim _{n \rightarrow \infty}(1+1 / n)^{n}=e$.
Problem 2. Apply the integral test to each of the following series, and state what conclusion may be drawn:
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{4 / 3}}$
(c) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n^{3}}}$

Problem 3. As a consequence of our limit theorems, we know that if $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ converge, then so do $\sum_{n}\left(a_{n}+b_{n}\right)$ and $\sum_{n} c a_{n}$ for all constants c. It turns out that it is not necessarily true that $\sum_{n} a_{n} b_{n}$ converges. As a special case (where $a_{n}=b_{n}$), find a series $\sum_{n} a_{n}$ such that $\sum_{n} a_{n}=0$, and yet $\sum_{n} a_{n}^{2}$ diverges to ∞.

