Math 112 Group problems, Monday Week 11

PROBLEM 1. Apply the ratio test to each of the following series, and state what conclusion
may be drawn:
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For part (d), you may use the fact that lim, (1 + 1/n)" =e.
SOLUTION:
(a) We have
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Hence, the series diverges by the ratio test.
(b) We have
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Hence, the series converges by the ratio test.
(c) We have
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So the ratio test is inconclusive.

(d) We have
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Hence, the series converges by the ratio test.
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PROBLEM 2. Apply the integral test to each of the following series, and state what conclusion
may be drawn:
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SOLUTION:
(a) We have
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Hence, the series diverges.

(b) We have
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Since the integral converges, so does the series.
(c) We have
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Since the integral converges, so does the series.

PROBLEM 3. As a consequence of our limit theorems, we know that if )" a, and ), b,
converge, then so do ), (an + by) and ) ca, for all constants c. It turns out that it is
not necessarily true that ) an,b, converges. As a special case (where a, = by), find a
series > ay,, such that Y a, =0, and yet Y, a2 diverges to occ.

SOLUTION: Let {a,} be the sequence
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On the other hand, the sequence {a%} is the sequence
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which diverges by comparison with the harmonic series.

which converges to 0.



