Problem 1. Apply the ratio test to each of the following series, and state what conclusion may be drawn:
(a) $\sum_{n=1}^{\infty} \frac{n!}{5^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{n^{2}}{(2 n)!}$
(c) $\sum_{n=1}^{\infty} \frac{1}{2 n^{2}}$
(d) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$

For part (d), you may use the fact that $\lim _{n \rightarrow \infty}(1+1 / n)^{n}=e$.

Solution:
(a) We have

$$
\frac{\frac{(n+1)!}{5^{n+1}}}{\frac{n!}{5^{n}}}=\frac{(n+1)!}{n!} \cdot \frac{5^{n}}{5^{n+1}}=\frac{n+1}{5} \longrightarrow \infty .
$$

Hence, the series diverges by the ratio test.
(b) We have

$$
\frac{\frac{(n+1)^{2}}{(2(n+1))!}}{\frac{n^{2}}{(2 n)!}}=\frac{(n+1)^{2}}{n^{2}} \cdot \frac{(2 n)!}{(2 n+2)!}=\left(\frac{n+1}{n}\right)^{2} \cdot \frac{1}{(2 n+2)(2 n+1)} \longrightarrow 0 .
$$

Hence, the series converges by the ratio test.
(c) We have

$$
\frac{\frac{1}{2(n+1)^{2}}}{\frac{1}{2 n^{2}}}=\left(\frac{n+1}{n}\right)^{2} \longrightarrow 1 .
$$

So the ratio test is inconclusive.
(d) We have

$$
\begin{aligned}
\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}} & =\frac{n^{n}}{(n+1)^{n+1}} \cdot \frac{(n+1)!}{n!} \\
& =\frac{n^{n}}{(n+1)^{n+1}} \cdot(n+1) \\
& =\frac{n^{n}}{(n+1)^{n}} \\
& =\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \\
& =\frac{1}{e}<1 .
\end{aligned}
$$

Hence, the series converges by the ratio test.

Problem 2. Apply the integral test to each of the following series, and state what conclusion may be drawn:
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{4 / 3}}$
(c) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n^{3}}}$

Solution:

(a) We have

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x=\lim _{n \rightarrow \infty} \int_{1}^{n} x^{-1 / 2} d x=\left.\lim _{n \rightarrow \infty} 2 x^{1 / 2}\right|_{1} ^{n}=2 \lim _{n \rightarrow \infty}(\sqrt{n}-1)=\infty
$$

Hence, the series diverges.
(b) We have

$$
\int_{1}^{\infty} \frac{1}{x^{4 / 3}}=\lim _{n \rightarrow \infty} \int_{1}^{n} x^{-4 / 3} d x=-\left.3 \lim _{n \rightarrow \infty} x^{-1 / 3}\right|_{1} ^{n}=-3 \lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt[3]{n}}-1\right)=3
$$

Since the integral converges, so does the series.
(c) We have

$$
\int_{1}^{\infty} \frac{x^{2}}{e^{x^{3}}} d x=\lim _{n \rightarrow \infty} \int_{1}^{n} x^{2} e^{-x^{3}} d x=-\left.\frac{1}{3} \lim _{n \rightarrow \infty} e^{-x^{3}}\right|_{1} ^{n}=-\frac{1}{3} \lim _{n \rightarrow \infty}\left(\frac{1}{e^{n^{3}}}-\frac{1}{e}\right)=\frac{1}{3 e} .
$$

Since the integral converges, so does the series.
Problem 3. As a consequence of our limit theorems, we know that if $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ converge, then so do $\sum_{n}\left(a_{n}+b_{n}\right)$ and $\sum_{n} c a_{n}$ for all constants c. It turns out that it is not necessarily true that $\sum_{n} a_{n} b_{n}$ converges. As a special case (where $a_{n}=b_{n}$), find a series $\sum_{n} a_{n}$ such that $\sum_{n} a_{n}=0$, and yet $\sum_{n} a_{n}^{2}$ diverges to ∞.

Solution: Let $\left\{a_{n}\right\}$ be the sequence

$$
1,-1, \sqrt{\frac{1}{2}},-\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{3}},-\sqrt{\frac{1}{3}}, \ldots
$$

The sequence of partial sums i

$$
1,0, \sqrt{\frac{1}{2}}, 0, \sqrt{\frac{1}{3}}, 0, \ldots,
$$

which converges to 0 .
On the other hand, the sequence $\left\{a_{n}^{2}\right\}$ is the sequence

$$
1,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \ldots,
$$

which diverges by comparison with the harmonic series.

