Problem 1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z)=3 z^{2}+2$. Compute $f^{\prime}(3 i)$ directly from the definition of the derivative.

Problem 2. Let $A, B, C \subseteq F$ where $F=\mathbb{R}$ or \mathbb{C}, and suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are continuous functions. Show that $g \circ f$ is continuous by filling in the blanks below.

Proof. Let $a \in A$, and let $\varepsilon>0$. Since g is continuous at $f(a)$, there exists $\delta>0$ such that

$$
\begin{equation*}
|x-f(a)|<\delta \quad \Rightarrow \quad \square \tag{1}
\end{equation*}
$$

Fix this δ. Since f is continuous at a, there exists $\eta>0$ such that

$$
\begin{equation*}
|x-a|<\eta \quad \Rightarrow \quad \square \tag{2}
\end{equation*}
$$

Combining (1) and (2), we see that

$$
|x-a|<\eta \quad \Rightarrow \quad \square
$$

Thus, $g \circ f$ is continuous at a.

Problem 3.
(a) Let $z, w \in \mathbb{C}$. What do the triangle inequality and the reverse triangle inequality say about $|z+w|$? What about $|z-w|$?
(b) Prove that the function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(x)=|x|$ is continuous.

