Math 112 Group problems, Friday Week 11

PROBLEM 1. Let $f: \mathbb{C} \to \mathbb{C}$ be given by $f(z) = 3z^2 + 2$. Compute f'(3i) directly from the definition of the derivative.

PROBLEM 2. Let $A, B, C \subseteq F$ where $F = \mathbb{R}$ or \mathbb{C} , and suppose that $f: A \to B$ and $g: B \to C$ are continuous functions. Show that $g \circ f$ is continuous by filling in the blanks below.

Proof. Let $a \in A$, and let $\varepsilon > 0$. Since g is continuous at f(a), there exists $\delta > 0$ such that

(1) $|x - f(a)| < \delta \Rightarrow$

Fix this δ . Since f is continuous at a, there exists $\eta > 0$ such that

 \Rightarrow

$$(2) |x-a| < \eta$$

Combining (1) and (2), we see that

$$|x-a| < \eta \quad \Rightarrow$$

Thus, $g \circ f$ is continuous at a.

PROBLEM 3.

- (a) Let $z, w \in \mathbb{C}$. What do the triangle inequality and the reverse triangle inequality say about |z + w|? What about |z w|?
- (b) Prove that the function $f: \mathbb{C} \to \mathbb{C}$ defined by f(x) = |x| is continuous.