Problem 1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z)=3 z^{2}+2$. Compute $f^{\prime}(3 i)$ directly from the definition of the derivative.

Solution: We have

$$
\begin{aligned}
\lim _{x \rightarrow a} f^{\prime}(3 i) & =\lim _{h \rightarrow 0} \frac{f(3 i+h)-f(3 i)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3(3 i+h)^{2}+2\right)-\left(3(3 i)^{2}+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3\left(-9+6 i h+h^{2}\right)+2\right)-(3(-9)+2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{18 i h+3 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(18 i+3 h) \\
& =18 i .
\end{aligned}
$$

Problem 2. Let $A, B, C \subseteq F$ where $F=\mathbb{R}$ or \mathbb{C}, and suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are continuous functions. Show that $g \circ f$ is continuous by filling in the blanks below.

Proof. Let $a \in A$, and let $\varepsilon>0$. Since g is continuous at $f(a)$, there exists $\delta>0$ such that

$$
\begin{equation*}
|x-f(a)|<\delta \quad \Rightarrow \quad \square \text {. } \tag{1}
\end{equation*}
$$

Fix this δ. Since f is continuous at a, there exists $\eta>0$ such that

$$
\begin{equation*}
|x-a|<\eta \quad \Rightarrow \quad \square \tag{2}
\end{equation*}
$$

Combining (1) and (2), we see that

$$
|x-a|<\eta \quad \Rightarrow \quad \square
$$

Thus, $g \circ f$ is continuous at a.

Proof. Let $\varepsilon>0$. Since g is continuous at $f(a)$, there exists $\delta>0$ such that

$$
\begin{equation*}
|x-f(a)|<\delta \quad \Rightarrow \quad|g(x)-g(f(a))|<\varepsilon \tag{3}
\end{equation*}
$$

Fix this δ. Since f is continuous at a, there exists $\eta>0$ such that

$$
\begin{equation*}
|x-a|<\eta \quad \Rightarrow \quad{ }_{1}|f(x)-f(a)|<\delta . \tag{4}
\end{equation*}
$$

Combining (3) and (4), we see that

$$
|x-a|<\eta \quad \Rightarrow \quad|f(x)-f(a)|<\delta \quad \Rightarrow \quad|g(f(x))-g(f(a))|<\varepsilon .
$$

Thus, $g \circ f$ is continuous at a.
Problem 3.
(a) Let $z, w \in \mathbb{C}$. What do the triangle inequality and the reverse triangle inequality say about $|z+w|$? What about $|z-w|$?
(b) Prove that the function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(x)=|x|$ is continuous.

Solution:

(a) Let $z, w \in \mathbb{C}$. The triangle inequality says that

$$
|z+w| \leq|z|+|w| .
$$

Replacing w by $-w$ in the above inequality yields

$$
|z-w|=|z+(-w)| \leq|z|+|-w|=|z|+|w| .
$$

Hence,

$$
|z-w| \leq|z|+|w| .
$$

The reverse triangle inequality says that

$$
|z+w| \geq\|z|+| w\|
$$

It follows that

$$
|z-w|=|z+(-w)| \geq||z|+|-w||=\| z|+|w||,
$$

i.e.,

$$
|z-w| \geq\|z|+| w\| .
$$

(b) Proof. Let $a \in \mathbb{C}$. Given $\varepsilon>0$, let $\delta=\varepsilon$, and suppose that $|x-a|<\delta$. Then, by the reverse triangle inequality,

$$
|f(x)-f(a)|=||x|-|a|| \leq|x-a|<\delta=\varepsilon .
$$

