Problem 1. In what sense is $\sum_{n=0}^{\infty} i^{n}$ a sequence? Draw this sequence in the complex plane.

Problem 2. Let $\left\{a_{n}\right\}$ be a sequence of real numbers.
(a) Critique the statement that $\sum_{n=0}^{\infty} a_{n}$ is convergent if and only if its sequence of partial sums is bounded. Give a proof or a counterexample for both implications.
(b) Does anything change if $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers?

Problem 3. Determine whether the following series converge, and in the case one does, find its sum. If the sum is complex, express the answer in the form $a+b i$ with $a, b \in \mathbb{R}$.
(a) $\sum_{n=2}^{\infty}(-1)^{n} \frac{3^{2 n+2}}{10^{n}}$
(b) $\sum_{n=0}^{\infty}\left(\frac{2+i}{2}\right)^{n}$
(c) $\sum_{n=0}^{\infty}\left(\frac{3+i}{5}\right)^{n}$.

Problem 4. Express $0.99999 \ldots$ as a geometric series, and sum the series. Do the same for $6.232323 \ldots$ to express this number as a quotient of integers.

Problem 5. Sum the series $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$.

