
Math 112 Group problems, Friday Week 10

Problem 1. Use the limit comparison test to determine whether the following series con-
verge. You may use the fact that
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Problem 2. Are the following series absolutely convergent, conditionally convergent, or
divergent?
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Problem 3. What does the alternating series test say about the following series?
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Problem 4. Consider the series from the previous problem:
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Here is a typical partial sum:
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(a) Prove that
∑∞

k=0
1

2k+1 diverges to infinity.

(b) Find a lower bound for s2k+1 that allows you to show that the series (1) diverges.
(c) Why doesn’t this example violate the alternating series test?
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