
Math 112 Group problems, Friday Week 10

Problem 1. Use the limit comparison test to determine whether the following series con-
verge. You may use the fact that

∑∞
n=1

1
np converges if and only if p > 1.

(a)
∞∑
n=1

5n2 − 6n+ 3

4n6 + n3 + 7
(b)

∞∑
n=1

1√
n2 + 2

Solution.

(a) This series converges by limit comparison with the convergent series
∑∞

n=1
1
n4 since, as

n→∞, (
5n2 − 6n+ 3

4n6 + n3 + 7

)/(
1

n4

)
=

5n6 − 6n5 + 3n4

4n6 + n3 + 7
−→ 5

4
6= 0.

(b) This series diverges by limit comparison with the divergent series
∑∞

n=1
1
n since, as

n→∞,(
1√

n2 + 2

)/(
1

n

)
=

n√
n2 + 2

=
1
n · n

1
n ·
√
n2 + 2

=
1√

1 + 2
n2

−→ 1 6= 0.

Problem 2. Are the following series absolutely convergent, conditionally convergent, or
divergent?

(a)
∞∑
n=1

(−1)n+1 n

3n+ 1
(b)

∞∑
n=1

(−1)n+1

√
n

n+ 4
(c)

∞∑
n=0

(−3)n

5n+1
.

Solution.

(a) This series is divergent by the n-th term test since its sequence of terms diverges. In
particular,

lim
n→∞

(−1)n+1 n

3n+ 1
6= 0.

(b) This series is conditionally convergent. To apply the alternating series test, we first
check that {

√
n/(n+ 4)} is (eventually) decreasing by showing the derivative with

respect to n is negative. Using the quotient rule,(
n1/2

n+ 4

)′
=

1
2n
−1/2(n+ 4)− n1/2

(n+ 4)2
=

(n+ 4)− 2n

2
√
n(n+ 4)2

=
−n+ 4

2
√
n(n+ 4)2

< 0

for n > 4. Next, notice that limn→∞
√
n

n+4 = 0. (To give a formal proof of this

fact, we can use the squeeze theorem since 0 ≤
√
n

n+4 ≤
√
n
n = 1√

n
, and we know

that limn→∞
1√
n
= 0.)

We have just shown that the series is convergent. It is conditionally convergent
since

∑∞
n=1

n
n+4 diverges by limit comparison with

∑∞
n=1

1√
n
: as n→∞,( √

n

n+ 4

)/(
1√
n

)
=

n

n+ 4
−→ 1 6= 0.

1



2

(c) This series is absolutely convergent since it is essentially a geometric series with ratio
less than 1:

∞∑
n=0

3n

5n+1
=

1

5

∞∑
n=0

(
3

5

)n

and 3/5 < 1.

Problem 3. What does the alternating series test say about the following series?

1− 1

2
+

1

3
− 1

22
+

1

5
− 1

23
+

1

7
− 1

24
+ · · ·

Solution. The alternating series test is inconclusive since the terms of the series are not
monotonically decreasing. Here is a plot of some of the values 1, 12 ,

1
3 ,

1
22
, 15 , . . . :

Problem 4. Consider the series from the previous problem:

(1) 1− 1

2
+

1

3
− 1

22
+

1

5
− 1

23
+

1

7
− 1

24
+ · · · .

Here is a typical partial sum:

s2k+1 = 1− 1

2
+

1

3
− 1

22
+ · · · − 1

2k
+

1

2k + 1

= 1 +
1

3
+ · · ·+ 1

2k + 1
−
(
1

2
+

1

22
+ · · ·+ 1

2k

)
.

(a) Prove that
∑∞

k=0
1

2k+1 diverges to infinity.

(b) Find a lower bound for s2k+1 that allows you to show that the series (1) diverges.
(c) Why doesn’t this example violate the alternating series test?

Solution.
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(a) The series diverges by limit comparison with
∑∞

n=1
1
n since, as k →∞,(

1

2k + 1

)/(
1

k

)
=

k

2k + 1
−→ 1

2
6= 0.

Since the terms of the series are positive, the partial sums for the series are monoton-
ically increasing. Therefore, by the monotone convergence theorem, the series is not
bounded. Thus, the series diverges to infinity.

(b) We have
1

2
+ · · ·+ 1

2k
≤
∞∑
n=1

1

2n
=

1

2

(
1

1− 1/2

)
= 1.

Therefore,

s2k+1 = 1 +
1

3
+ · · ·+ 1

2k + 1
−
(
1

2
+

1

22
+ · · ·+ 1

2k

)
≥
(
1 +

1

3
+ · · ·+ 1

2k + 1

)
− 1

Since
∑∞

k=1
1

2k+1 diverges to infinity, the series (1) diverges.

(c) As stated in the previous problem, the alternating series does not apply here since the
term of the series are not monotonically decreasing.


