Problem 1.

(a) Following the dashed blue line, how can you see the sequence $a_{1}=4 / 3$ and $a_{n+1}=$ $\frac{1}{2} a_{n}+\frac{1}{3}$ for $n \geq 1$ as a sequence of heights in the above diagram?
(b) Using the diagram, can you say what the behavior of the sequence would be if we started with a different value for a_{1} (but used the same recursion formula for the rest of the sequence)?

Problem 2. Here is a diagram for the sequence $a_{1} \in \mathbb{R}$ and $a_{n+1}=\frac{1}{4} a_{n}+\frac{1}{3}$.

(a) Choose a value for a_{1}, and draw a diagram illustrating the convergence of $\left\{a_{n}\right\}$.
(b) Comparing this sequence with the previous one, how does the slope of the line defining the recurrence affect the rate of convergence.

Problem 3. Here is a diagram for the sequence $a_{1} \in \mathbb{R}$ and $a_{n+1}=2 a_{n}-\frac{1}{4}$.

Characterize the convergence behavior of the sequence $\left\{a_{n}\right\}$ for each choice of initial value a_{1}. (Are there any special choices for a_{1} ?)

Problem 4. Here is a diagram for the sequence $a_{1} \in \mathbb{R}$ and $a_{n+1}=-\frac{1}{2} a_{n}+1$.

Characterize the convergence behavior of the sequence $\left\{a_{n}\right\}$ for each choice of initial value a_{1}.

Problem 5. Summarize the convergence behavior of a sequence defined by $a_{1} \in \mathbb{R}$ and $a_{n+1}=m a_{n}+b$ for $m, b \in \mathbb{R}$.
(a) Consider the cases $|m|<1,|m|>1, m=-1$, and $m=1$ separately. When does the sequence converge for all initial values? When does the sequence converge for only a special initial value (in which case the sequence is constant)?
(b) When is the sequence monotone?
(c) How does $|m|$ affect the rate of convergence or divergence?

Problem 6. (Extra time.) Let $a_{1}=1$, and for $n \geq 1$, let $a_{n+1}:=\frac{1}{2} a_{n}+\frac{1}{3}$. From the data shown below, it looks like the sequence $\left\{a_{n}\right\}$ is monotone decreasing and converging to $2 / 3$.

$$
\begin{array}{cccc}
a_{1}=1.000000 \ldots, & a_{2}=0.833333 \ldots, & a_{3}=0.750000 \ldots, & a_{4}=0.708333 \ldots, \\
a_{5}=0.687500 \ldots, & a_{6}=0.677083 \ldots, & a_{7}=0.671875 \ldots, & a_{8}=0.669271 \ldots, \\
\ldots, & a_{20}=0.666667, & \ldots &
\end{array}
$$

(a) Prove that $\left\{a_{n}\right\}$ is bounded below by $2 / 3$.
(b) Prove that $\left\{a_{n}\right\}$ is monotone decreasing.
(c) Thus, by the MCT, the sequence converges. Find its limit.

