Problem 1. Find the limit of the sequence $\left\{\frac{3 n^{2}-5}{n^{2}-3 n+2}\right\}$ using our limit theorems (i.e., without using an $\varepsilon-N$ argument). Justify each step.

Problem 2. We have shown that $\lim _{n \rightarrow \infty} \frac{\sin (n)}{n}=0$. Use this result along with our limit theorems to find the limit of the sequence $\left\{\frac{\sin (n)}{n^{2}-n+1}\right\}$ justifying each step.

Problem 3. State whether each of the following statements is true or false (with proof or concrete counterexample):
(a) If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both diverge, then $\left\{a_{n}+b_{n}\right\}$ diverges.
(b) If $\left\{a_{n}\right\}$ converges and $\left\{b_{n}\right\}$ diverges, then $\left\{a_{n}+b_{n}\right\}$ diverges.

Problem 4. Let $k \in \mathbb{N}_{>0}$. Find, with proof, the limit of the sequence $\left\{\left(\frac{n+1}{n}\right)^{k}\right\}$.
Problem 5. Suppose that $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} t_{n}=t$. Review the proof that

$$
\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=s+t
$$

