Problem 1. Find the limit of the sequence $\left\{\frac{3 n^{2}-5}{n^{2}-3 n+2}\right\}$ using our limit theorems (i.e., without using an $\varepsilon-N$ argument). Justify each step.

Solution. Using our limit theorems,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3 n^{2}-5}{n^{2}-3 n+2} & =\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}\left(3 n^{2}-5\right)}{\frac{1}{n^{2}}\left(n^{2}-3 n+2\right)} \\
& =\lim _{n \rightarrow \infty} \frac{3-\frac{5}{n^{2}}}{1-\frac{3}{n}+\frac{2}{n^{2}}} \\
& =\frac{\lim _{n \rightarrow \infty} 3+\left(\lim _{n \rightarrow \infty}(-5)\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{2}}{\lim _{n \rightarrow \infty} 1+\left(\lim _{n \rightarrow \infty}(-3)\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)+\left(\lim _{n \rightarrow \infty} 2\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{2}} \\
& =\frac{3-5 \cdot 0^{2}}{1-3 \cdot 0+2 \cdot 0^{2}} \\
& =3 .
\end{aligned}
$$

Problem 2. We have shown that $\lim _{n \rightarrow \infty} \frac{\sin (n)}{n}=0$. Use this result along with our limit theorems to find the limit of the sequence $\left\{\frac{\sin (n)}{n^{2}-n+1}\right\}$ justifying each step.

Solution. Using our limit theorems,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sin (n)}{n^{2}-n+1} & =\frac{\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sin (n)}{\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\left(n^{2}-n+1\right)} \\
& =\frac{\lim _{n \rightarrow \infty} \frac{\sin (n)}{n^{2}}}{\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}+\frac{1}{n^{2}}\right)} \\
& =\frac{\left(\lim _{n \rightarrow \infty}\left(\frac{\sin (n)}{n}\right)\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)}{\left(\lim _{n \rightarrow \infty} 1\right)+\left(\lim _{n \rightarrow \infty}(-1)\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)+\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{2}} \\
& =\frac{0 \cdot 0}{1-1 \cdot 0+0^{2}} \\
& =0
\end{aligned}
$$

Problem 3. State whether each of the following statements is true or false (with proof or concrete counterexample):
(a) If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both diverge, then $\left\{a_{n}+b_{n}\right\}$ diverges.
(b) If $\left\{a_{n}\right\}$ converges and $\left\{b_{n}\right\}$ diverges, then $\left\{a_{n}+b_{n}\right\}$ diverges.

Solution.

(a) False. Consider $a_{n}=n$ and $b_{n}=-n$.
(b) True. Suppose $\left\{a_{n}\right\}$ converges. Then by the limit theorems, if $\left\{a_{n}+b_{n}\right\}$ converges, it follows that

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)-\lim _{n \rightarrow \infty} a_{n}
$$

exists and equals $\lim _{n \rightarrow \infty} b_{n}$. So $\left\{b_{n}\right\}$ would have to converge.
Problem 4. Let $k \in \mathbb{N}_{>0}$. Find, with proof, the limit of the sequence $\left\{\left(\frac{n+1}{n}\right)^{k}\right\}$.
Solution. We find

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{k} & =\left(\lim _{n \rightarrow \infty} \frac{n+1}{n}\right)^{k} \\
& =\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)\right)^{k} \\
& =\left(\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{k} \\
& =(1+0)^{k} \\
& =1^{k} \\
& =1
\end{aligned}
$$

Problem 5. Suppose that $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} t_{n}=t$. Review the proof that

$$
\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=s+t
$$

Proof. Let $\varepsilon>0$. Since $\lim _{n \rightarrow \infty} s_{n}=s$, there exists $N_{s} \in \mathbb{R}$ such that $n>N_{s}$ implies $\left|s-s_{n}\right|<\varepsilon / 2$. Similarly, there exists $N_{t} \in \mathbb{R}$ such that $n>N_{t}$ implies $\left|t-t_{n}\right|<\varepsilon / 2$. Let $N:=\max \left\{N_{s}, N_{t}\right\}$. Then $n>N$ implies both $\left|s-s_{n}\right|<\varepsilon / 2$ and $\left|t-t_{n}\right|<\varepsilon / 2$, simultaneously. Using the triangle inequality, it follows that if $n>N$,

$$
\left|(s+t)-\left(s_{n}+t_{n}\right)\right|=\left|\left(s-s_{n}\right)+\left(t-t_{n}\right)\right| \leq\left|s-s_{n}\right|+\left|t-t_{n}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

