Math 112 Group problems, Monday Week 9
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without using an e-N argument). Justify each step.

PrROBLEM 1. Find the limit of the sequence { } using our limit theorems (i.e.,

Solution. Using our limit theorems,
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PROBLEM 2. We have shown that lim,_ .

= 0. Use this result along with our limit

theorems to find the limit of the sequence { } justifying each step.

Solution. Using our limit theorems,
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PROBLEM 3. State whether each of the following statements is true or false (with proof or
concrete counterexample):

(a) If {a,} and {b,} both diverge, then {a, + by} diverges.
(b) If {a,} converges and {b,} diverges, then {a, + by} diverges.



Solution.

(a) False. Consider a,, = n and b, = —n.

(b) True. Suppose {a,} converges. Then by the limit theorems, if {a, + b,} converges, it
follows that
lim (a, + b,) — lim a,
n—oo n—oo
exists and equals lim,_ o b,. So {b,} would have to converge.

PRrROBLEM 4. Let k£ € Nyg. Find, with proof, the limit of the sequence {(”—H)k}
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PROBLEM 5. Suppose that lim,_, s, = s and lim,,_,s ¢, = t. Review the proof that
(Sn+tn) =s+t.
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Proof. Let ¢ > 0. Since lim,_,s S, = s, there exists N; € R such that n > N, implies
|s — sp| < &/2. Similarly, there exists N; € R such that n > N; implies |t — t,| < g/2.
Let N := max{Ns, N;}. Then n > N implies both |s — s,| < ¢/2 and |t — t,| < €/2,
simultaneously. Using the triangle inequality, it follows that if n > N,
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