Math 112 Group problems, Wednesday Week 8

Dynamical Systems

self-mapping of a set S : a function $f: S \rightarrow S$.
n-th iterate of s under f :

$$
f^{n}(s):= \begin{cases}s & \text { if } n=0 \\ f\left(f^{n-1}(s)\right) & \text { if } n>0\end{cases}
$$

orbit of s under $f: \operatorname{Orb}_{f}(s):=\left\{s, f(s), f^{2}(s), f^{3}(s), \ldots\right\}=$ the iterates of s under f.
fixed points of $f: \operatorname{Fix}(\mathrm{f}):=\{s \in S: f(s)=s\}$.

In the following problems, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}-1$. Our goal is to understand the orbits of f.

Problem 1. What is the orbit of 0 under f ? What is the orbit of -1 ?
Solution: We have $f(0)=-1$ and $f(f(0))=f(-1)=0$. Therefore, the orbit of 0 is $\operatorname{Orb}_{f}(0)=\{-1,0\}$, and the orbit of -1 is $\operatorname{Orb}_{f}(-1)=\{-1,0\}$.

Problem 2. What are the first four iterates of $\frac{1}{2}$, i.e., $f^{0}(1 / 2), f^{1}(1 / 2), f^{2}(1 / 2), f^{3}(1 / 2)$? (You do not need to evaluate.)

Solution: We have

$$
\begin{aligned}
& f^{0}(1 / 2)=1 / 2 \\
& f^{1}(1 / 2)=(1 / 2)^{2}-1=-3 / 4 \\
& f^{2}(1 / 2)=f(-3 / 4)=(-3 / 4)^{2}-1=-7 / 16 \\
& f^{3}(1 / 2)=f(-7 / 16)=(-7 / 16)^{2}-1=-207 / 256
\end{aligned}
$$

Problem 3. Label the 12 dots in Figure 1 using the notation $f^{i}(1 / 2)$.
Solution: See Figure 1.
Problem 4. What are the fixed points of f ? How can you picture these in Figure 1?

Solution: We have $x=f(x)=x^{2}-1$, or $x^{2}-x-1=0$. The two solutions to this equation are

$$
\frac{1 \pm \sqrt{5}}{2} .
$$

We can visualize these values as the x-coordinates of the point of intersection of the line $y=x$ with the graph of f in Figure 1.

Problem 5. Draw a picture as in Figure 1 with an initial point just to the left of the positive fixed point. See Figure 2.

Solution: See Figure 2.
Problem 6. Use induction to prove that if $x \in[-1,0]$, then $f^{n}(x) \in[-1,0]$ for all $n \geq 0$. (You may use standard facts about real numbers.)

Solution: Let $x \in[-1,0]$. The base case holds since $f^{0}(x)=x \in[-1,0]$. Suppose that $a:=f^{n}(x) \in[-1,0]$ for some $n \geq 0$. Then

$$
f^{n+1}(x)=f\left(f^{n}(x)\right)=f(a)=a^{2}-1 .
$$

Since $a \in[-1,0]$, it follows that $a^{2} \in[0,1]$. (Details: We have $0 \leq-a<1$, which implies that $0 \leq(-a)^{2} \leq 1$.) Therefore, $f(a)=a^{2}-1 \in[-1,0]$. The result follows by induction.

Problem 7. Show that if $x \in[-1,1]$, then $f(x) \in[-1,0]$ for all $n \geq 1$.
Solution: If $x \in[-1,1]$, then $x^{2} \in[0,1]$, and hence, $f(x)=x^{2}-1 \in[-1,0]$. The result then follows from the previous problem.

Facts. Let α denote the positive fixed point of f. Then:
» If $x \in(\alpha, \infty)$, then the iterates of x increase without bound. (So the orbit of x is unbounded.)
» If $x \in(-\infty,-\alpha)$, then $f(x) \in(\alpha, \infty)$.
» If $x \in(1, \alpha)$, then $f\left({ }^{n}\right)(x)$ decreases until an iterate is in $[0,1]$.
» If $x \in(-\alpha,-1)$, then $f(x) \in(0, \alpha)$.

Figure 1. Visualizing the dynamical system determined by $f(x)=x^{2}-1$.

Figure 2. Draw a picture as in Figure 1 with an initial point just to the left of the positive fixed point.

