Dynamical Systems

Let $S = \mathbb{R}$ or \mathbb{C} , and let $f: S \to S$. The filled Julia set for f is

 $K(f) = \{z \in S : \operatorname{Orb}_f(z) \text{ is bounded}\}.$

Thus, K(f) is the set of points $z \in S$ whose iterates are bounded: there exists a real number r such that $|f^n(z)| \leq r$ for all $n \geq 0$. The Julia set, denoted J(f), is the boundary¹ of K(f).

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 - 1$. We saw last time that $K(f) = [-\alpha, \alpha]$ where $\alpha = \frac{1+\sqrt{5}}{2}$. Thus, J(f) consists of the two endpoints: $J(f) = \{-\alpha, \alpha\}$.

PROBLEM 1. What are the filled Julia set and the Julia set for the function $f \colon \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$?

PROBLEM 2. What are the filled Julia set and the Julia set for the function $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = z^2$?

PROBLEM 3. Consider the filled Julia set K(f) for the function $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = z^2 - 1$. The set $K(f) \subseteq \mathbb{C}$ is pictured below:

- (a) What is the horizontal line segment running through the middle (along the real axis)?
- (b) Is $i \in K(f)$? What about i/2? (Hint: use that fact that you know something about the filled Julia set for f restricted to the real numbers. Note: $1.61 \le (1 + \sqrt{5})/2 \le 1.62$.)

PROBLEM 4. Let $c \in \mathbb{C}$ and consider the function $f_c \colon \mathbb{C} \to \mathbb{C}$ defined by $f_c(z) = z^2 + c$. (For instance, $f_{-1}(z) = z^2 - 1$.) Show that $K(f_c)$ is symmetric about the origin.

PROBLEM 5. Go to https://www.marksmath.org/visualization/julia_sets/. There are two copies of \mathbb{C} pictured on that page. Clicking a point on the left side selects a point $c \in \mathbb{C}$, and the number c is displaying in a box underneath. You can choose c without clicking by entering it in this box. The right side then shows the Julia set for $f_c(z) = z^2 + c$.

¹If X is a subset of a topological space, the *closure* of X, denoted \overline{X} , is the smallest closed set containing K. It is the intersection of all closed set containing X. The *boundary* of X is the intersection of the closure of X and the closure of the complement of X. Example: the closure of an open ball in \mathbb{C} is a circle.

- (a) Enter the point c = 0 to see the Julia set for $f_{-1}(z) = z^2$. (You will see the point displayed in the set on the left.)
- (b) Enter the point c = -1 to see the Julia set for $f_{-1}(z) = z^2 1$.
- (c) What happens as you click points along the real axis going from 0 to -1?
- (d) Hit "Clear" to erase the Julia sets drawn so far. The shape pictured in the left is the Mandelbrot set, M. It is the set of points $c \in \mathbb{C}$ such that the iterates of 0 under the mapping $f_c(z) = z^2 + c$ are bounded, i.e., $0, c, c^2 + c, (c^2 + c)^2 + c, \ldots$ is bounded. What distinguishes Julia sets for $c \in M$ and $c \notin M$?

PROBLEM 6. Explain why $K(f_c)$ is symmetric about the real axis.

PROBLEM 7. Prove that for all $c \in \mathbb{C}$, we have $K(f_c) \neq \emptyset$.