Dynamical Systems

Let $S=\mathbb{R}$ or \mathbb{C}, and let $f: S \rightarrow S$. The filled Julia set for f is

$$
K(f)=\left\{z \in S: \operatorname{Orb}_{f}(z) \text { is bounded }\right\}
$$

Thus, $K(f)$ is the set of points $z \in S$ whose iterates are bounded: there exists a real number r such that $\left|f^{n}(z)\right| \leq r$ for all $n \geq 0$. The Julia set, denoted $J(f)$, is the boundary ${ }^{1}$ of $K(f)$.

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}-1$. We saw last time that $K(f)=[-\alpha, \alpha]$ where $\alpha=\frac{1+\sqrt{5}}{2}$. Thus, $J(f)$ consists of the two endpoints: $J(f)=\{-\alpha, \alpha\}$.

Problem 1. What are the filled Julia set and the Julia set for the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$?

Solution: We have $K(f)=[-1,1]$, and $J(f)=\{-1,1\}$.
Problem 2. What are the filled Julia set and the Julia set for the function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z)=z^{2}$?

Solution: We have $K(f)$ is the closed disc of radius one centered at the origin, and $J(f)$ is the circle of radius one centered at the origin.

Problem 3. Consider the filled Julia set $K(f)$ for the function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z)=$ $z^{2}-1$. The set $K(f) \subseteq \mathbb{C}$ is pictured below:

(a) What is the horizontal line segment running through the middle (along the real axis)?
(b) Is $i \in K(f)$? What about $i / 2$? (Hint: use that fact that you know something about the filled Julia set for f restricted to the real numbers. Note: $1.61 \leq(1+\sqrt{5}) / 2 \leq 1.62$.)

Solution:

(a) $[-\alpha, \alpha]$ with α as defined above.

[^0](b) We have $f(i)=i^{2}-1=-2<-\alpha$. From this iterate onward, we may as well be considering the real version of f with filled in Julia set $[-\alpha, \alpha]$. Since $2 \notin[-\alpha, \alpha]$, its iterates are not bounded. Hence, $i \notin K(f)$. On the other hand, $f(i / 2)=(i / 2)^{2}-1=$ $-5 / 4=-1.25 \in[-\alpha, \alpha]$. Hence, its iterates are bounded. Therefore, $i / 2 \in K(f)$.

Problem 4. Let $c \in \mathbb{C}$ and consider the function $f_{c}: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f_{c}(z)=z^{2}+c$. (For instance, $f_{-1}(z)=z^{2}-1$.) Show that $K\left(f_{c}\right)$ is symmetric about the origin by showing that $z \in K(f) \Rightarrow-z \in K(f)$.

Solution: Since $f_{c}(-z)=(-z)^{2}+c=z^{2}+c=f(z)$, the iterates of z are bounded if and only if the iterates of $-z$ are bounded.

Problem 5. Go to https://www.marksmath.org/visualization/julia_sets/. There are two copies of \mathbb{C} pictured on that page. Clicking a point on the left side selects a point $c \in \mathbb{C}$, and the number c is displaying in a box underneath. You can choose c without clicking by entering it in this box. The right side then shows the Julia set for $f_{c}(z)=z^{2}+c$.
(a) Enter the point $c=0$ to see the Julia set for $f_{-1}(z)=z^{2}$. (You will see the point displayed in the set on the left.)
(b) Enter the point $c=-1$ to see the Julia set for $f_{-1}(z)=z^{2}-1$.
(c) What happens as you click points along the real axis going from 0 to -1 ?
(d) Hit "Clear" to erase the Julia sets drawn so far. The shape pictured in the right is the Mandelbrot set, M. It is the set of points $c \in \mathbb{C}$ such that the iterates of 0 under the mapping $f_{c}(z)=z^{2}+c$ are bounded, i.e., $0, c, c^{2}+c,\left(c^{2}+c\right)^{2}+c, \ldots$ is bounded. What distinguishes Julia sets for $c \in M$ and $c \notin M$?

Problem 6. Show that $K\left(f_{c}\right)$ is symmetric about the real axis.
Problem 7. Prove that for all $c \in \mathbb{C}$, we have $K\left(f_{c}\right) \neq \emptyset$.

[^0]: ${ }^{1}$ If X is a subset of a topological space, the closure of X, denoted \bar{X}, is the smallest closed set containing K. It is the intersection of all closed set containing X. The boundary of X is the intersection of the closure of X and the closure of the complement of X. Example: the closure of an open ball in \mathbb{C} is a circle.

