Problem 1. Let $a_{n}=(-1)^{n}$, and let $a=0$. Is the following statement true or false? Provide a proof or explicit counterexample.

For all $N \in \mathbb{R}$ there is an $\varepsilon>0$, such that if $n>N$, then $\left|a-a_{n}\right|<\varepsilon$.
What is the relevance of the above statement to the question of the convergence or divergence of $\left\{a_{n}\right\}$?

Solution: The statement is true. For instance, take $\varepsilon=10$. Then

$$
\left|a-a_{n}\right|=\left|0-(-1)^{n}\right|=1<10=\varepsilon
$$

for all n. So no matter the choice of N, we have $n>N$ implies that $\left|a-a_{n}\right|<10$.
The statement, although vaguely similar to the definition of the limit, is irrelevant to the question of convergence.

Problem 2. Let $a_{n}=1 / n$ for $n \geq 1$, and let $a=0$. Is the following statement true or false? Provide a proof or explicit counterexample.

$$
\text { For all } \varepsilon>0 \text { and } N \in \mathbb{R} \text {, if } n>N \text {, then }\left|a-a_{n}\right|<\varepsilon \text {. }
$$

What is the relevance of the above statement to the question of the convergence or divergence of $\left\{a_{n}\right\}$?

Solution: The statement is false. For instance, let $\varepsilon=1 / 2, N=0$, and $n=1$. Then $n>N$, but

$$
\left.\left|a-a_{n}\right|=\mid a-a_{1}\right]=|0-1 / 1|=1 \nless \frac{1}{2}=\varepsilon,
$$

i.e., $\left|a-a_{1}\right| \nless \varepsilon$.

Again, although the statement is vaguely similar to the definition of the limit, is irrelevant to the question of convergence.

Problem 3. Find the limit of $\lim _{n \rightarrow \infty} \frac{3 n^{3}+2 n}{6 n^{3}+4 n+7}$ and provide an $\varepsilon-N$ proof.
Solution: Claim: $\lim _{n \rightarrow \infty} \frac{3 n^{3}+2 n}{6 n^{3}+4 n+7}=\frac{1}{2}$.
Proof. Given $\varepsilon>0$, let $N=\max \left\{1, \frac{7}{12 \varepsilon}\right\}$ and suppose $n>N$. Then

$$
\begin{aligned}
\left|\frac{1}{2}-\frac{3 n^{3}+2 n}{6 n^{3}+4 n+7}\right| & =\frac{\left(6 n^{3}+4 n+7\right)-2\left(3 n^{3}+2 n\right)}{2\left(6 n^{3}+4 n+7\right)} \\
& =\frac{7}{12 n^{3}+8 n+14}
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{7}{12 n^{3}} \\
& \leq \frac{7}{12 n} \\
& <\frac{7}{12 N} \\
& =\varepsilon
\end{aligned}
$$

Problem 4. (Challenge, if there is extra time.) Prove that $\lim _{n \rightarrow \infty} \frac{1}{n} \neq 1$. (Hint: you need to find an explicit $\varepsilon>0$ that can't be beat by any $N \in \mathbb{R}$.)

Proof. We have $a=1$ and $a_{n}=1 / n$. So

$$
\left|a-a_{n}\right|=\left|1-\frac{1}{n}\right|=\frac{n-1}{n} .
$$

The question is whether, given arbitrary $\varepsilon>0$, can we find N such that $n>N$ implies $\left|a-a_{n}\right|<\varepsilon$? Since $\left|a-a_{n}\right|$ is getting close to 1 as n gets large, the answer is no-not for arbitrary ε. Let $\varepsilon=1 / 2$, for instance. Then

$$
\left|a-a_{n}\right| \geq \varepsilon \quad \Longleftrightarrow \quad \frac{n-1}{n} \geq \frac{1}{2} \quad \Longleftrightarrow \quad 2(n-1) \geq n \quad \Longleftrightarrow \quad n \geq 2
$$

So no matter what the value of $N \in \mathbb{R}$, there will be an $n>N$ such that $\left|a-a_{n}\right| \nless 1 / 2$.

