Math 112 Group problems, Friday Week 7
Problem 1. Give an $\varepsilon-N$ proof that

$$
\lim _{n \rightarrow \infty} \frac{\cos (n)+\sqrt{2} i \sin (n)}{n}=0 .
$$

(Hint: the triangle inequality is your friend.)

Proof. Given $\varepsilon>0$, let $N=3 / \varepsilon$. If $n>N$, it follows that

$$
\begin{aligned}
\left|0-\frac{\cos (n)+\sqrt{2} i \sin (n)}{n}\right| & =\left|\frac{\cos (n)+\sqrt{2} i \sin (n)}{n}\right| \\
& =\frac{|\cos (n)+\sqrt{2} i \sin (n)|}{n} \\
& \leq \frac{|\cos (n)|+|\sqrt{2} i \sin (n)|}{n} \\
& =\frac{|\cos (n)|+\sqrt{2}|\sin (n)|}{n} \\
& \leq \frac{1+\sqrt{2}}{n} \\
& \leq \frac{3}{n} \\
& <\frac{3}{N} \\
& =\varepsilon
\end{aligned}
$$

Problem 2. Give an $\varepsilon-N$ proof that

$$
\lim _{n \rightarrow \infty} \frac{n}{4 n^{3}+2 n^{2}+5 n+1}=0 .
$$

Proof. Given $\varepsilon>0$, let $N=\sqrt[3]{\varepsilon}$. If $n>N$, then

$$
\left|0-\frac{1}{4 n^{3}+2 n^{2}+5 n+1}\right|=\frac{1}{4 n^{3}+2 n^{2}+5 n+1}<\frac{1}{4 n^{3}}<\frac{1}{n^{3}}<\frac{1}{N^{3}}=\varepsilon .
$$

Problem 3. Give an $\varepsilon-N$ proof that

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}=0 .
$$

Proof. Given $\varepsilon>0$, let $N=1 / \varepsilon^{2}$. If $n>N$, then

$$
\left|0-\frac{1}{\sqrt{n+1}+\sqrt{n}}\right|=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2 \sqrt{n}}<\frac{1}{\sqrt{n}}<\frac{1}{\sqrt{N}}=\varepsilon
$$

Problem 4. Does the sequence $\{\sqrt{n+1}-\sqrt{n}\}$ converge? Proof?
Solution. Claim: $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0$.
Proof. Given $\varepsilon>0$, let $N=1 / \varepsilon^{2}$. Then if $n>N$, we have

$$
\begin{aligned}
|0-(\sqrt{n+1}-\sqrt{n})| & =|\sqrt{n+1}-\sqrt{n}| \\
& =\left|\left(\frac{\sqrt{n+1}-\sqrt{n}}{1}\right) \cdot\left(\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right)\right| \\
& =\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}} \\
& =\frac{1}{\sqrt{n+1}+\sqrt{n}} \\
& <\frac{1}{2 \sqrt{n}} \\
& <\frac{1}{\sqrt{n}} \\
& <\frac{1}{\sqrt{N}} \\
& =\varepsilon .
\end{aligned}
$$

Problem 5. (Challenge, if you have extra time.)
Does $\left\{\frac{n!}{n^{n}}\right\}$ converge? (Hint: write $n!/ n^{n}$ as a product of n distinct factors, and try to bound it above by a nice function of n.)

Solution: Claim $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$.

Proof. Write $n!/ n^{n}$ as the product of n distinct terms:

$$
\frac{n!}{n^{n}}=\frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{2}{n} \cdot \frac{1}{n} .
$$

Notice that $k / n \leq 1$ for $k=2,3, \ldots, n$, so each of the first $n-1$ terms in the above product is bounded above by 1 . It follows that

$$
0 \leq \frac{n!}{n^{n}} \leq \frac{1}{n}
$$

for $n \geq 1$.
Given $\varepsilon>0$, let $N=1 / \varepsilon$. If $n>N$, then using what we have just learned,

$$
\left|0-\frac{n!}{n^{n}}\right|=\frac{n!}{n^{n}} \leq \frac{1}{n}<\frac{1}{N}=\varepsilon .
$$

