Let $n \geq 1$. A solution $z \in \mathbb{C}$ to the equation $z^{n}=1$ is called an n-th root of unity. Our goal is to find all of them.

Problem 1. For each $n \in\{2,3,4\}$, (i) find all $z \in \mathbb{C}$ such that $z^{n}=1$ using algebra, (ii) find the polar form for each solution, and (iii) draw the solutions in the complex plane. (The case for each n should be on a separate page, finding the solutions to $z^{n}-1=0$.)
(a) $n=2$
(b) $n=3$ (Hint: $z-1$ is a factor of $z^{3}-1$. So $z^{3}-1=(z-1)\left(a z^{2}+b z+c\right)$ for some $a, b, c \in \mathbb{C}$. Long division could help.)
(c) $n=4$ (Hint: factor!)

Problem 2. If $z^{n}=1$ for some $n \geq 1$, prove that z lies on the unit circle in the complex plane.

Problem 3. Use the intuition you have developed so far to find the polar forms for all n-th roots of unity.

Problem 4. (If there is extra time.) Let $\mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$, and consider the mapping

$$
\begin{aligned}
f: \mathbb{C}^{*} & \rightarrow \mathbb{C} \\
z & \mapsto \frac{1}{\bar{z}} .
\end{aligned}
$$

(a) How does this mapping transform the modulus and the argument of each point in \mathbb{C}^{*}.
(b) Think of f as a geometric transformation. It takes the punctured plane \mathbb{C}^{*}, warps it somehow, and sends it back to the plane \mathbb{C}^{*}. Describe the process in geometric terms.
(Hint: writing z in polar form will help.)

Problem 5. (If there is extra time.) The graph of a function $f: A \rightarrow B$ is the set $\{(x, f(x)) \in A \times B\}$. Thus, if $A=B=\mathbb{R}$, we can draw the graph in $\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$. What if f is a complex function, i.e., if $A=B=\mathbb{C}$? Then the graph sits in $\mathbb{C} \times \mathbb{C}=\mathbb{R}^{2} \times \mathbb{R}^{2} \simeq \mathbb{R}^{4}=$ $\{(a, b, c, d): a, b, c, d \in \mathbb{R}\}$. Since the graph of a function sits in four-dimensional space, we need a different strategy to picture these functions. Here is one way. Suppose $f(z)=(a, b) \in$ $\mathbb{C}=\mathbb{R}^{2}$. We encode $a \in \mathbb{R}$ as color, and $b \in \mathbb{R}$ as brightness. (To do that, we need to choose reasonable functions $a \mapsto$ color and $b \mapsto$ brightness.) To picture the graph of f, we go to each point $z \in \mathbb{C}=\mathbb{R}^{2}$, and color that point with its corresponding color and brightness.
Go to https://sagecell.sagemath.org/ and type in the following to see the graph of $f(z)=$ $z^{3}-1$:

```
p = complex_plot(lambda z: z^3-1, (-2, 2), (-2, 2))
p.show(aspect_ratio=1)
```

(a) Try graphing the functions $z^{n}=1$ for various values of n. How do you connect these pictures to the roots of unity?
(b) Try graphing some other functions, e.g, $z^{\wedge} 2+2 * z+1$ (note the $*$ for multiplication). A polynomial of degree 3? What about trig functions? The mysterious Riemann zeta function $\operatorname{zeta}(z)$? For the zeta function, you might want to zoom out by replacing $(-2,2),(-2,2)$ by $(-20,20),(-20,20)$.

