Recall the interval notion for subsets of the reals:

$$
\begin{array}{lll}
(a, b):=\{x \in \mathbb{R}: a<x<b\}, & {[a, b):=\{x \in \mathbb{R}: a \leq x<b\},} & (a, b]:=\{x \in \mathbb{R}: a<x \leq b\} \\
{[a, b]:=\{x \in \mathbb{R}: a \leq x \leq b\},} & (-\infty, b):=\{x \in \mathbb{R}: x<b\}, & (-\infty, b]:=\{x \in \mathbb{R}: x \leq b\} \\
(a, \infty):=\{x \in \mathbb{R}: x>a\}, & {[a, \infty):=\{x \in \mathbb{R}: x \geq a\},} & (\infty, \infty):=\mathbb{R}
\end{array}
$$

Recall the following definitions pertaining to a subset S of an ordered field F :
$» B \in F$ is an upper bound for S if $s \leq B$ for all $s \in S$,
$» b \in F$ is an lower bound for S if $b \leq s$ for all $s \in S$,
$» S$ is bounded if it has both an upper bound and a lower bound.
$» B \in F$ is a supremum for S if it is a least upper bound. This means that B is an upper bound and if B^{\prime} is any upper bound, then $B \leq B^{\prime}$. If B exists, then we write $B=\sup (S)$ or $B=\operatorname{lub}(S)$.
$» b \in F$ is a infimum for S if it is a greatest lower bound. This means that b is a lower bound and if b^{\prime} is any lower bound, then $b^{\prime} \leq b$. If b exists, then we write $b=\inf (S)$ or $b=\operatorname{glb}(S)$.
» If S has a supremum B and $B \in S$, then we call B the maximum or maximal element of S and write $\max (S)=B$.
» If S has in infimum b and $b \in S$, then we call b the minimum of minimal element of S and write $\min (S)=b$.

Finally, recall that \mathbb{R} satisfies the completeness axiom: every nonempty subset of \mathbb{R} that is bounded above has a supremum.

Problem 1. Let $S=[0,1) \subset \mathbb{R}$.
(a) Give three upper bounds and three lower bounds for S.
(b) Is S bounded? (Appeal to the definition of bounded here.)
(c) Does S have a supremum? If so, what is it? Same question for infimum.
(d) Does S have a maximum? a minimum?

Solution.

(a) For example, 1,7 and 10^{6} are upper bounds and $0,-3$, and -23 are lower bounds.
(b) Yes, since S is bounded above and bounded below.
(c) The supremum of S is 1 and the infimum is 0 .
(d) $\operatorname{Since} \sup (S)=1 \notin S$, the set S has no maximum. On the other hand, $\inf (S)=0 \in S$. Thus, $\min (S)=0$.

Problem 2. These questions concern the ordered field of rational numbers \mathbb{Q}, not the field \mathbb{R}. Let $S=(0, \pi) \cap \mathbb{Q}$, a subset of \mathbb{Q}.
(a) Is S bounded?
(b) Does S have a supremum?

Solution.

(a) Yes. For instance, $4 \in \mathbb{Q}$ is an upper bound and $0 \in \mathbb{Q}$ is a lower bound.
(b) Since $\pi \notin \mathbb{Q}$ the set S has no supremum (in \mathbb{Q}).

Problem 3. Here we're are considering subsets of \mathbb{R}. Fill in the following table, using "DNE" if the quantity does not exist:

	\sup	\max	\inf	\min
$[-1,2)$				
$(-1,2) \cup[3,4]$				
$[3, \infty) \cup[3,4]$				
$\mathbb{Z}_{\geq 0}$				
$\{-7, \sqrt{2}, 8,23\}$				
$\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$				
$\cap_{n=1}^{\infty}(1-1 / n, 1+1 / n)$				
$\cup_{n=1}^{\infty}(1-1 / n, 1+1 / n)$				

Solution.

	\sup	\max	\inf	\min
$[-1,2)$	2	DNE	-1	-1
$(-1,2) \cup[3,4]$	4	4	-1	DNE
$[3, \infty) \cup[3,4]$	DNE	DNE	-1	DNE
$\mathbb{Z}_{\geq 0}$	DNE	DNE	0	0
$\{-7, \sqrt{2}, 8,23\}$	23	23	-7	-7
$\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$	1	DNE	$\frac{1}{2}$	$\frac{1}{2}$
$\cap_{n=1}^{\infty}(1-1 / n, 1+1 / n)$	1	1	1	1
$\cup_{n=1}^{\infty}(1-1 / n, 1+1 / n)$	2	DNE	0	DNE

Note that $\cap_{n=1}^{\infty}(1-1 / n, 1+1 / n)=\{1\}$, and $\cup_{n=1}^{\infty}(1-1 / n, 1+1 / n)=(0,2)$.
Problem 4. Mark each of the following statements as true or false. In each case, give a brief explanation if it is true or a specific counterexample if it is false. Throughout, S denotes a nonempty subset of \mathbb{R}.
(a) If S has an upper bound, then S has a least upper bound.
(b) If S is bounded, then S has a maximum and a minimum.
(c) If $S \subseteq \mathbb{Q}$ and S is bounded, then $\sup S \in \mathbb{Q}$.
(d) If $m=\inf S$ and $m^{\prime}<m$, then m^{\prime} is a lower bound of S.

Solution.

(a) True by the completeness axiom.
(b) False. A counterexample is $(0,1)$.
(c) False. A counterexample is given in an earlier problem: $(0, \pi) \cap \mathbb{Q}$.
(d) True. If $s \in S$, then it follows from the definition of the infimum that $m<s$. If $m^{\prime}<m$, then by transitivity of $<$, we have $m^{\prime}<s$, too.

