Recall the interval notion for subsets of the reals:

$$\begin{split} & (a,b) := \{x \in \mathbb{R} : a < x < b\}\,, \qquad [a,b) := \{x \in \mathbb{R} : a \le x < b\}\,, \qquad (a,b] := \{x \in \mathbb{R} : a < x \le b\}\,, \\ & [a,b] := \{x \in \mathbb{R} : a \le x \le b\}\,, \qquad (-\infty,b) := \{x \in \mathbb{R} : x < b\}\,, \qquad (-\infty,b] := \{x \in \mathbb{R} : x \le b\}\,, \\ & (a,\infty) := \{x \in \mathbb{R} : x > a\}\,, \qquad [a,\infty) := \{x \in \mathbb{R} : x \ge a\}\,, \qquad (\infty,\infty) := \mathbb{R}. \end{split}$$

Recall the following definitions pertaining to a subset S of an ordered field F:

- » $B \in F$ is an upper bound for S if $s \leq B$ for all $s \in S$,
- » $b \in F$ is an *lower bound* for S if $b \leq s$ for all $s \in S$,
- » S is bounded if it has both an upper bound and a lower bound.
- » $B \in F$ is a supremum for S if it is a least upper bound. This means that B is an upper bound and if B' is any upper bound, then $B \leq B'$. If B exists, then we write $B = \sup(S)$ or $B = \operatorname{lub}(S)$.
- » $b \in F$ is a *infimum* for S if it is a greatest lower bound. This means that b is a lower bound and if b' is any lower bound, then $b' \leq b$. If b exists, then we write $b = \inf(S)$ or $b = \operatorname{glb}(S)$.
- » If S has a supremum B and $B \in S$, then we call B the maximum or maximal element of S and write $\max(S) = B$.
- » If S has in infimum b and $b \in S$, then we call b the minimum of minimal element of S and write $\min(S) = b$.

Finally, recall that \mathbb{R} satisfies the *completeness axiom*: every nonempty subset of \mathbb{R} that is bounded above has a supremum.

PROBLEM 1. Let $S = [0, 1) \subset \mathbb{R}$.

- (a) Give three upper bounds and three lower bounds for S.
- (b) Is S bounded? (Appeal to the definition of *bounded* here.)
- (c) Does S have a supremum? If so, what is it? Same question for infimum.
- (d) Does S have a maximum? a minimum?

Solution.

- (a) For example, 1, 7 and 10^6 are upper bounds and 0, -3, and -23 are lower bounds.
- (b) Yes, since S is bounded above and bounded below.
- (c) The supremum of S is 1 and the infimum is 0.
- (d) Since $\sup(S) = 1 \notin S$, the set S has no maximum. On the other hand, $\inf(S) = 0 \in S$. Thus, $\min(S) = 0$.

PROBLEM 2. These questions concern the ordered field of rational numbers \mathbb{Q} , not the field \mathbb{R} . Let $S = (0, \pi) \cap \mathbb{Q}$, a subset of \mathbb{Q} .

- (a) Is S bounded?
- (b) Does S have a supremum?

Solution.

- (a) Yes. For instance, $4 \in \mathbb{Q}$ is an upper bound and $0 \in \mathbb{Q}$ is a lower bound.
- (b) Since $\pi \notin \mathbb{Q}$ the set S has no supremum (in \mathbb{Q}).

PROBLEM 3. Here we're are considering subsets of \mathbb{R} . Fill in the following table, using "DNE" if the quantity does not exist:

	sup	max	inf	min
[-1,2)				
$(-1,2) \cup [3,4]$				
$[3,\infty)\cup[3,4]$				
$\mathbb{Z}_{\geq 0}$				
$\left\{-7, \sqrt{2}, 8, 23\right\}$				
$\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$				
$\cap_{n=1}^{\infty}(1-1/n,1+1/n)$				
$\cup_{n=1}^{\infty}(1-1/n,1+1/n)$				

Solution.

	sup	max	\inf	min
[-1,2)	2	DNE	-1	-1
$(-1,2) \cup [3,4]$	4	4	-1	DNE
$[3,\infty)\cup[3,4]$	DNE	DNE	-1	DNE
$\mathbb{Z}_{\geq 0}$	DNE	DNE	0	0
$\left\{-7,\sqrt{2},8,23\right\}$	23	23	-7	-7
$\overline{\left\{\frac{n}{n+1}:n\in\mathbb{N}\right\}}$	1	DNE	$\frac{1}{2}$	$\frac{1}{2}$
$\bigcap_{n=1}^{\infty} (1-1/n, 1+1)$	(n) 1	1	1	1
$\cup_{n=1}^{\infty} (1-1/n, 1+1)$	(n) 2	DNE	0	DNE
∞ (1 1/m 1 + 1/m) -	$\int 1$ and 1^{∞}	$(1 \ 1/m)$	1 + 1 /	(n) = (0, 2)

Note that $\bigcap_{n=1}^{\infty} (1 - 1/n, 1 + 1/n) = \{1\}$, and $\bigcup_{n=1}^{\infty} (1 - 1/n, 1 + 1/n) = (0, 2)$.

PROBLEM 4. Mark each of the following statements as true or false. In each case, give a brief explanation if it is true or a specific counterexample if it is false. Throughout, S denotes a nonempty subset of \mathbb{R} .

- (a) If S has an upper bound, then S has a least upper bound.
- (b) If S is bounded, then S has a maximum and a minimum.
- (c) If $S \subseteq \mathbb{Q}$ and S is bounded, then $\sup S \in \mathbb{Q}$.
- (d) If $m = \inf S$ and m' < m, then m' is a lower bound of S.

Solution.

- (a) True by the completeness axiom.
- (b) False. A counterexample is (0, 1).
- (c) False. A counterexample is given in an earlier problem: $(0,\pi) \cap \mathbb{Q}$.
- (d) True. If $s \in S$, then it follows from the definition of the infimum that m < s. If m' < m, then by transitivity of <, we have m' < s, too.