Problem 1. Let F be an ordered field, and let $w, x, y, z \in F$. Use the order axioms to prove that if $w<x$ and $y<z$, then $w+y<x+z$. In other words, we can "add inequalities".

Problem 2. Let F be an ordered field, and let $x \in F$ with $x>0$. Since F is a field, x has a multiplicative inverse, $1 / x$. Prove that $1 / x>0$. [Hint: break the possibilities for $1 / x$ into cases using trichotomy, and rule out two of those cases.]

Problem 3. Can the field $\mathbb{Z} / 5 \mathbb{Z}$ be ordered? In other words, does there exist a relation on $\mathbb{Z} / 5 \mathbb{Z}$ satisfying the order axioms? [Hint: from the lecture notes, we know that for any nonzero element x of an ordered field, we have $x^{2}>0$. In particular, this means that $1>0$ since $1=1^{2}$. Start with $1>0$.]

