Recall the following definitions pertaining to a subset S of an ordered field F:

- » $B \in F$ is an upper bound for S if $s \leq B$ for all $s \in S$,
- » $b \in F$ is an *lower bound* for S if $b \leq s$ for all $s \in S$,
- » S is *bounded* if it has both an upper bound and a lower bound.
- » $B \in F$ is a supremum for S if it is a least upper bound. This means that B is an upper bound and if B' is any upper bound, then $B \leq B'$. If B exists, then we write $B = \sup(S)$ or $B = \operatorname{lub}(S)$.
- » $b \in F$ is a *infimum* for S if it is a greatest lower bound. This means that b is a lower bound and if b' is any lower bound, then $b' \leq b$. If b exists, then we write $b = \inf(S)$ or $b = \operatorname{glb}(S)$.
- » If S has a supremum B and $B \in S$, then we call B the maximum or maximal element of S and write $\max(S) = B$.
- » If S has in infimum b and $b \in S$, then we call b the minimum of minimal element of S and write $\min(S) = b$.

Recall that \mathbb{R} satisfies the *completeness axiom*: every nonempty subset of \mathbb{R} that is bounded above has a supremum.

PROBLEM 1. Here were are considering subsets of \mathbb{R} . Fill in the following table, using "DNE" if the quantity does not exist:

	sup	max	inf	min
$\left\{\frac{1}{2n}: n \in \mathbb{N}_{>0}\right\}$				
$\left\{(-1)^n\left(1+\frac{1}{n}\right):n\in\mathbb{N}_{>0}\right\}$				

PROBLEM 2. Mark each of the following statements as true or false. In each case, give a brief explanation if it is true or a specific counterexample if it is false. Throughout, S denotes a nonempty subset of \mathbb{R} .

- (a) If $B = \sup S$ and B' < B, then B' is an upper bound of S.
- (b) If $B = \sup S$ and B < B', then B' is an upper bound of S.
- (c) \emptyset is bounded.
- (d) $\sup \emptyset$ and $\inf \emptyset$ do not exist.

PROBLEM 3. Your answer to the last two parts of the previous problem shows that \mathbb{R} has a subset that is bounded above but that has no supremum. Why doesn't that contradict the fact that \mathbb{R} is complete.

PROBLEM 4. Suppose that $\emptyset \neq X \subseteq S \subset \mathbb{R}$ and S has an supremum. Prove that

- (a) $\sup(S)$ is an upper bound for X,
- (b) $\sup X$ exists, and
- (c) $\sup X \leq \sup S$.
- (For part (a), use the template from the reading.)

PROBLEM 5. Let S be a subset of an ordered field F.

Recall the definition of the supremum: $B \in F$ is a *supremum* for S if it is a least upper bound. This means that B is an upper bound and if B' is any upper bound, then $B \leq B'$. Use this definition to show that if u and v are both suprema of S, then u = v.