Recall the following definitions pertaining to a subset S of an ordered field F :
$» B \in F$ is an upper bound for S if $s \leq B$ for all $s \in S$,
$» b \in F$ is an lower bound for S if $b \leq s$ for all $s \in S$,
$» S$ is bounded if it has both an upper bound and a lower bound.
$» B \in F$ is a supremum for S if it is a least upper bound. This means that B is an upper bound and if B^{\prime} is any upper bound, then $B \leq B^{\prime}$. If B exists, then we write $B=\sup (S)$ or $B=\operatorname{lub}(S)$.
$» b \in F$ is a infimum for S if it is a greatest lower bound. This means that b is a lower bound and if b^{\prime} is any lower bound, then $b^{\prime} \leq b$. If b exists, then we write $b=\inf (S)$ or $b=\operatorname{glb}(S)$.
» If S has a supremum B and $B \in S$, then we call B the maximum or maximal element of S and write $\max (S)=B$.
» If S has in infimum b and $b \in S$, then we call b the minimum of minimal element of S and write $\min (S)=b$.

Recall that \mathbb{R} satisfies the completeness axiom: every nonempty subset of \mathbb{R} that is bounded above has a supremum.

Problem 1. Here were are considering subsets of \mathbb{R}. Fill in the following table, using "DNE" if the quantity does not exist:

	\sup	\max	\inf	\min
$\left\{\frac{1}{2 n}: n \in \mathbb{N}_{>0}\right\}$				
$\left\{(-1)^{n}\left(1+\frac{1}{n}\right): n \in \mathbb{N}_{>0}\right\}$				

Solution.

	sup	\max	\inf	\min
$\left\{\frac{1}{2 n}: n \in \mathbb{N}_{>0}\right\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	DNE
$\left\{(-1)^{n}\left(1+\frac{1}{n}\right): n \in \mathbb{N}_{>0}\right\}$	$\frac{3}{2}$	$\frac{3}{2}$	-2	-2

Problem 2. Mark each of the following statements as true or false. In each case, give a brief explanation if it is true or a specific counterexample if it is false. Throughout, S denotes a nonempty subset of \mathbb{R}.
(a) If $B=\sup S$ and $B^{\prime}<B$, then B^{\prime} is an upper bound of S.
(b) If $B=\sup S$ and $B<B^{\prime}$, then B^{\prime} is an upper bound of S.
(c) \emptyset is bounded.
(d) $\sup \emptyset$ and $\inf \emptyset$ do not exist.

Solution.

(a) False. A counter example is given by $S=(0,1), B=1$ and $B^{\prime}=1 / 2$.
(b) True. Suppose $B<B^{\prime}$. To see B^{\prime} is an upper bound, let $s \in S$. By definition of the supremum, $s<B$. Then, by transitivity of $<$ it follows that $s<B^{\prime}$.
(c) Yes. Every real number is both an upper bound and a lower bound for \emptyset. For instance, 3 is an upper bound since it is true that $3>x$ for all $x \in \emptyset$. That's because there there exists no element x in \emptyset. Similar reasoning shows that 3 is also a lower bound.
(d) Since every real number is an upper bound for \emptyset, it follows that \emptyset has no least upper bound, i.e., it has no supremum. A similar argument shows that \emptyset does not have an infimum.

Problem 3. Your answer to the last two parts of the previous problem shows that \mathbb{R} has a subset that is bounded above but that has no supremum. Why doesn't that contradict the fact that \mathbb{R} is complete.

Solution. The completeness axiom requires that every nonempty subset of \mathbb{R} that is bounded above have a supremum.

Problem 4. Suppose that $\emptyset \neq X \subseteq S \subset \mathbb{R}$ and S has an supremum. Prove that
(a) $\sup X$ exists, and
(b) $\sup X \leq \sup S$.
(Hint for part (a): By completeness, you just need to show what about X ? What could possibly be an upper bound for X ? Hint for part (b): why do you just need to show that $\sup S$ is an upper bound for X ?)

Proof.

(a) We first show that X is bounded above by $\sup (S)$. Let $x \in X$. Then, since $X \subseteq S$, we have $x \in S$, and hence $x \leq \sup (S)$. Thus, X is bounded above. Since $X \neq \emptyset$, it follows that from completeness of \mathbb{R} that $\sup (X)$ exists.
(b) We have just shown that $\sup (S)$ is an upper bound for X. It follows from the definition of the supremum of X that $\sup (X) \leq \sup (S)$. (The idea is that $\sup (S)$ is an upper bound for X, and $\sup (X)$ is the least upper bound for X.)

Problem 5. Let S be a subset of an ordered field F.
Recall the definition of the supremum: $B \in F$ is a supremum for S if it is a least upper bound. This means that B is an upper bound and if B^{\prime} is any upper bound, then $B \leq B^{\prime}$.
Use this definition to show that if u and v are both suprema of S, then $u=v$.
Proof. Suppose u and v are suprema of S. Then since u is an upper bound and v is a least upper bound, it follows that $v \leq u$. Similarly, since v is an upper bound, and u is a least upper bound, it follows that $u \leq v$.
Since $v \leq u$ and $u \leq v$, the trichotomy axiom for ordered fields implies that $u=v$.

