Problem 1.
(a) If F is a field and x is a nonzero element of F. What is the meaning of $\frac{1}{x}$ (also denoted $\left.x^{-1}\right)$?
(b) What is $\frac{1}{3}$ in the field $\mathbb{Z} / 7 \mathbb{Z}$? (Denote the equivalence classes for $\mathbb{Z} / 7 \mathbb{Z}$ be $\{0,1,2,3,4,5,6\}$, for convenience.)
(c) Show that 2 does not have a multiplicative inverse in $\mathbb{Z} / 8 \mathbb{Z}$.

Problem 2. Let F be a field. In the lecture notes, we proved that for any $x \in F$, we have $x \cdot 0=0$. Using that proof as a model, prove that if $x, y, z \in F$, then

$$
z+x=z+y \quad \Longrightarrow \quad x=y
$$

Your proof should proceed by using one axiom per step. (You will need A4, A2, and the definition of 0 (A3).) The above result is called the cancellation law for addition in a field.

Problem 3. Let F be a field, and let $x \in F$
(a) What is the meaning of $-x$?
(b) What is -3 in the field $\mathbb{Z} / 7 \mathbb{Z}$? (Again, denote the equivalence classes for $\mathbb{Z} / 7 \mathbb{Z}$ be $\{0,1,2,3,4,5,6\}$.)
(c) Prove that $-1 \cdot x=-x$. (You will need to focus on the definitions of -1 and $-x$. Since F is a field, it has a multiplicative identity 1 , and that multiplicative identity must, like all element of F, have an additive inverse, -1 . By definition, -1 is the element of F which when added to 1 yields the additive identity, 0 . To test if a field element is $-x$, you add it to x and see if you get 0 . You will also probably use the fact that $0 \cdot x=0$, which we proved in the lecture notes.)

