Problem 1.

- (a) If F is a field and x is a nonzero element of F. What is the meaning of $\frac{1}{x}$ (also denoted x^{-1})?
- (b) What is ¹/₃ in the field ℤ/7ℤ? (Denote the equivalence classes for ℤ/7ℤ be {0, 1, 2, 3, 4, 5, 6}, for convenience.)
- (c) Show that 2 does not have a multiplicative inverse in $\mathbb{Z}/8\mathbb{Z}$.

Solution.

- (a) By $\frac{1}{x}$, we mean the multiplicative inverse of x, i.e., the element of F which when multiplied by x gives the multiplicative identity, 1.
- (b) We have $\frac{1}{3} = 5$ in $\mathbb{Z}/7\mathbb{Z}$ since $3 \cdot 5 = 15 = 1 \mod 7$.
- (c) Here are the multiples of 2 modulo 8:

So there is no element of $n \in \mathbb{Z}/8\mathbb{Z}$ such that 2n = 1 in $\mathbb{Z}/8\mathbb{Z}$.

PROBLEM 2. Let F be a field. In the lecture notes, we proved that for any $x \in F$, we have $x \cdot 0 = 0$. Using that proof as a model, prove that if $x, y, z \in F$, then

$$z + x = z + y \implies x = y.$$

Your proof should proceed by using one axiom per step. (You will need A4, A2, and the definition of 0 (A3).) The above result is called the *cancellation law for addition* in a field.

Proof. Since F is a field, the element z has an additive inverse -z. Thus,

$$z + x = z + y \quad \Rightarrow \quad -z + (z + x) = -z + (z + y)$$

$$\Rightarrow \quad (-z + z) + x = (-z + z) + y \qquad (associativity of +)$$

$$\Rightarrow \quad 0 + x = 0 + y \qquad (definition of -z)$$

$$\Rightarrow \quad x = y \qquad (definition of 0).$$

PROBLEM 3. Let F be a field, and let $x \in F$

- (a) What is the meaning of -x?
- (b) What is -3 in the field $\mathbb{Z}/7\mathbb{Z}$? (Again, denote the equivalence classes for $\mathbb{Z}/7\mathbb{Z}$ be $\{0, 1, 2, 3, 4, 5, 6\}$.)
- (c) Prove that $-1 \cdot x = -x$. (You will need to focus on the definitions of -1 and -x. Since F is a field, it has a multiplicative identity 1, and that multiplicative identity must, like all element of F, have an additive inverse, -1. By definition, -1 is the element of F which when added to 1 yields the additive identity, 0. To test if a field

element is -x, you add it to x and see if you get 0. You will also probably use the fact that $0 \cdot x = 0$, which we proved in the lecture notes.)

Solution.

- (a) By -x, we mean the additive inverse of x, that is, the element of F which when added to x yields the additive identity, 0.
- (b) We have -3 = 4 in $\mathbb{Z}/7\mathbb{Z}$ since 3 + 4 = 0 in $\mathbb{Z}/7\mathbb{Z}$.
- (c)

Proof. We have $-1 \cdot x + q$

$1 \cdot x + x = -1 \cdot x + 1 \cdot x$	(definition of 1)
$= (-1+1) \cdot x$	(distributivity)
$= 0 \cdot x$	(definition of -1)
= 0	(result from the lecture notes).

Since adding $-1 \cdot x$ to x yields 0, it follows definition of the additive inverse that $-1 \cdot x = -x$.