Math 112 Group problems, Wednesday Week 3

PROBLEM 1. Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$.

- (a) Give an example of two subsets X and Y of A and a function $f: A \to B$ such that $f(X \cap Y) \neq f(X) \cap f(Y)$.
- (b) Is it possible to find subsets X and Y of A such that $f(X \cap Y) \not\subseteq f(X) \cap f(Y)$?

PROBLEM 2. For each of the following functions, state why there is no inverse, or describe the inverse function.

(a)

 $\begin{array}{c} f \colon \mathbb{R} \to \mathbb{R} \\ x \mapsto |x|. \end{array}$ (b) $g \colon \mathbb{R}_{\geq 0} \to \mathbb{R} \\ x \mapsto |x|. \end{array}$ (c) $h \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \\ x \mapsto |x|. \end{array}$ PROBLEM 3. Show that the function

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 3x + 1$$

is a bijection by providing its inverse function. (Demonstrate that the function you produce is actually the inverse of f. You need to check both possible compositions are the identity.) [This is the second method of proving that a function is bijective. The first, which more closely follows the definition of bijectivity is to prove that the function is both injective and surjective.]

PROBLEM 4. Consider the functions f(x) = x + 1 and g(x) = 3x, both with domain and codomain \mathbb{R} . Compute the following: (i) $g \circ f$, (ii) $(g \circ f)^{-1}$, (iii) f^{-1} , (iv) g^{-1} , and (v) $f^{-1} \circ g^{-1}$. Verify that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.