Problem 1. Let $A=\{1,2,3\}$ and $B=\{a, b, c\}$.
(a) Give an example of two subsets X and Y of A and a function $f: A \rightarrow B$ such that $f(X \cap$ $Y) \neq f(X) \cap f(Y)$.
(b) Is it possible to find subsets X and Y of A such that $f(X \cap Y) \nsubseteq f(X) \cap f(Y)$?

Problem 2. For each of the following functions, state why there is no inverse, or describe the inverse function.
(a)

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto|x| .
\end{aligned}
$$

(b)

$$
\begin{aligned}
g: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R} \\
x & \mapsto|x| .
\end{aligned}
$$

(c)

$$
\begin{aligned}
h: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R}_{\geq 0} \\
x & \mapsto|x| .
\end{aligned}
$$

Problem 3. Show that the function

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 3 x+1
\end{aligned}
$$

is a bijection by providing its inverse function. (Demonstrate that the function you produce is actually the inverse of f. You need to check both possible compositions are the identity.) [This is the second method of proving that a function is bijective. The first, which more closely follows the definition of bijectivity is to prove that the function is both injective and surjective.]

Problem 4. Consider the functions $f(x)=x+1$ and $g(x)=3 x$, both with domain and codomain \mathbb{R}. Compute the following: (i) $g \circ f$, (ii) $(g \circ f)^{-1}$, (iii) f^{-1}, (iv) g^{-1}, and (v) $f^{-1} \circ g^{-1}$. Verify that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

