Problem 1. Let $A=\{1,2,3\}$ and $B=\{a, b, c\}$.
(a) Give an example of two subsets X and Y of A and a function $f: A \rightarrow B$ such that $f(X \cap$ $Y) \neq f(X) \cap f(Y)$.
(b) Is it possible to find subsets X and Y of A such that $f(X \cap Y) \nsubseteq f(X) \cap f(Y)$?

Solution:

(a) For one example, let $f(1)=f(2)=a$ and $f(3)=b$, and let $X=\{1\}$ and $Y=\{2\}$. Then $f(X \cap Y)=f(\emptyset)=\emptyset$, while

$$
f(X) \cap f(Y)=\{a\} \cap\{a\}=\{a\} .
$$

(b) This is not possible. We proved that $f(X \cap Y) \subseteq f(X) \cap f(Y)$ for all functions f and subsets X, Y of the domain of f in the lecture.

Problem 2. For each of the following functions, state why there is no inverse, or describe the inverse function.
(a)

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto|x| .
\end{aligned}
$$

(b)

$$
\begin{aligned}
g: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R} \\
x & \mapsto|x| .
\end{aligned}
$$

(c)

$$
\begin{aligned}
h: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R}_{\geq 0} \\
x & \mapsto|x| .
\end{aligned}
$$

Solution:

(a) This function has no inverse since it is not bijective. It's not surjective since, for example, $-1 \notin \operatorname{im}(f)$. It's not injective since, for example, $|-1|=|1|$.
(b) This function has no inverse since it is not bijective. It's not surjective since, for example, $-1 \notin \operatorname{im}(g)$.
(c) The inverse of this function is

$$
\begin{aligned}
h^{-1}: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R}_{\geq 0} \\
x & \mapsto x .
\end{aligned}
$$

Problem 3. Show that the function

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 3 x+1
\end{aligned}
$$

is a bijection by providing its inverse function. (Demonstrate that the function you produce is actually the inverse of f. You need to check both possible compositions are the identity.) [This is the second method of proving that a function is bijective. The first, which more closely follows the definition of bijectivity is to prove that the function is both injective and surjective.]

Solution: The inverse function is

$$
\begin{aligned}
g: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto(x-1) / 3 .
\end{aligned}
$$

To verify that g is the inverse, we check

$$
(f \circ g)(x)=f(g(x))=f((x-1) / 3)=3((x-1) / 3)+1=(x-1)+1=x,
$$

and

$$
(g \circ f)(x)=g(f(x))=g(3 x+1)=((3 x+1)-1) / 3=3 x / 3=x .
$$

Problem 4. Consider the functions $f(x)=x+1$ and $g(x)=3 x$, both with domain and codomain \mathbb{R}. Compute the following: (i) $g \circ f$, (ii) $(g \circ f)^{-1}$, (iii) f^{-1}, (iv) g^{-1}, and (v) $f^{-1} \circ g^{-1}$. Verify that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Solution:
(i) We have

$$
(g \circ f)(x)=g(f(x))=g(x+1)=3(x+1)=3 x+3 .
$$

(ii) To find $(g \circ f)^{-1}$, we set $y=3 x+3$ and solve for x. We find $x=(y-3) / 3$. Therefore, $(g \circ$ $f)^{-1}(x)=(x-3) / 3$ (with domain and codomain equal to \mathbb{R}).
(iii), (iv) Similarly, we find

$$
f^{-1}(x)=x-1 \quad \text { and } \quad g^{-1}(x)=x / 3 .
$$

(v) Therefore,

$$
\left(f^{-1} \circ g^{-1}\right)(x)=f^{-1}(x / 3)=x / 3-1=(x-3) / 3=(g \circ f)^{-1} .
$$

